首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5400篇
  免费   967篇
  国内免费   1318篇
测绘学   663篇
大气科学   822篇
地球物理   1137篇
地质学   2736篇
海洋学   877篇
天文学   419篇
综合类   400篇
自然地理   631篇
  2024年   23篇
  2023年   81篇
  2022年   216篇
  2021年   261篇
  2020年   246篇
  2019年   312篇
  2018年   236篇
  2017年   252篇
  2016年   277篇
  2015年   298篇
  2014年   378篇
  2013年   446篇
  2012年   445篇
  2011年   335篇
  2010年   265篇
  2009年   329篇
  2008年   393篇
  2007年   325篇
  2006年   386篇
  2005年   304篇
  2004年   269篇
  2003年   212篇
  2002年   200篇
  2001年   156篇
  2000年   155篇
  1999年   132篇
  1998年   128篇
  1997年   112篇
  1996年   85篇
  1995年   82篇
  1994年   78篇
  1993年   56篇
  1992年   56篇
  1991年   31篇
  1990年   34篇
  1989年   20篇
  1988年   19篇
  1987年   6篇
  1986年   11篇
  1985年   9篇
  1984年   11篇
  1983年   4篇
  1981年   3篇
  1980年   1篇
  1978年   3篇
  1977年   1篇
  1954年   3篇
排序方式: 共有7685条查询结果,搜索用时 15 毫秒
171.
Multianvil melting experiments in the system CaO–MgO–Al2O3–SiO2–CO2(CMAS–CO2) at 3–8 GPa, 1340–1800°C, involvingthe garnet lherzolite phase assemblage in equilibrium with CO2-bearingmelts, yield continuous gradations in melt composition betweencarbonatite, kimberlite, melilitite, komatiite, picrite, andbasalt melts. The phase relations encompass a divariant surfacein PT space. Comparison of the carbonatitic melts producedat the low-temperature side of this surface with naturally occurringcarbonatites indicates that natural magnesiocarbonatites couldbe generated over a wide range of pressures >2·5 GPa.Melts analogous to kimberlites form at higher temperatures alongthe divariant surface, which suggests that kimberlite genesisrequires more elevated geotherms. However, the amount of waterfound in some kimberlites has the potential to lower temperaturesfor the generation of kimberlitic melts by up to 150°C,provided no hydrous phases are present. Compositions resemblinggroup IB and IA kimberlites are produced at pressures around5–6 GPa and 10 GPa, respectively, whereas the compositionsof some other kimberlites suggest generation at higher pressuresstill. At pressures <4 GPa, an elevated geotherm producesmelilitite-like melt in the CMAS–CO2 system rather thankimberlite. Even when a relatively CO2-rich mantle compositioncontaining 0·15 wt % CO2 is assumed, kimberlites andmelilitites are produced by <1% melting and carbonatitesare generated by even smaller degrees of melting of <0·5%. KEY WORDS: carbonatite; CO2; kimberlite; melilitite; melt generation  相似文献   
172.
273.15K下LiCl-Li2B4O7-H2O体系热力学性质的等压研究   总被引:2,自引:0,他引:2       下载免费PDF全文
用等压法研究了273 15K下LiCl-Li2B4O7-H2O体系中纯盐水溶液(离子强度范围为LiCl0 2046~2 5055mol·kg-1,Li2B4O70 1295~0 3700mol·kg-1)以及混合盐水溶液(离子强度范围为0 0931~2 4911mol·kg-1)渗透系数和水活度;计算了LiCl-Li2B4O7-H2O体系的饱和蒸汽压,获得饱和蒸汽压、渗透系数随离子强度的变化规律。用实验数据以最小二乘法求取了LiCl和Li2B4O7纯盐参数及体系的混合盐参数,拟合的标准偏差分别为0 0077和0 026。用该模型计算的渗透系数值与实验结果取得合理的一致。同时研究结果与273 15K下LiCl-Li2SO4-H2O体系的渗透系数随离子强度变化的规律作了比较。本研究对完善低温下含锂、硼盐湖卤水体系的热力学模型和盐湖资源的综合开发利用具有重要意义。  相似文献   
173.
不同浓度的Na2SO4水溶液的拉曼光谱显示了SO42-的四个拉曼活性带:980 cm-1处的SO42-的对称伸缩振动模式v1带,1 106 cm-1处的反对称伸缩振动模式v3带,448 cm-1处的变形振动模式v2带和617 cm-1处的变形振动模式v4带。482 cm-1处的肩膀峰是由于NaSO4-离子对的形成对448 cm-1的v2带的影响而形成的SO42-的一个新的振动峰。浓Na2SO4水溶液中,水共享离子对[Na+.H2O.SO42-]-是主要的离子对物种。随着Na2SO4水溶液浓度的增加,Na+和SO42-的相互作用增强,NaSO4-离子对所占的摩尔分数增加。  相似文献   
174.
Climate factors play critical roles in controlling chemical weathering, while chemically weathered surface material can regulate climate change. To estimate global chemical weathering fluxes and CO2 balance, it is important to identify the characteristics and driving factors of chemical weathering and CO2 consumption on the Tibetan Plateau, especially in glaciated catchments. The analysis of the hydro-geochemical data indicated that silicate weathering in this area was inhibited by low temperatures, while carbonate weathering was promoted by the abundant clastic rocks with fresh surfaces produced by glacial action. Carbonate weathering dominated the riverine solute generation (with a contribution of 58%, 51%, and 43% at the QiangYong Glacier (QYG), the WengGuo Hydrological Station (WGHS), and the lake estuary (LE), respectively). The oxidation of pyrite contributed to 35%, 42%, and 30% of the riverine solutes, while silicate weathering contributed to 5%, 6%, and 26% of the riverine solutes at the QYG, WGHS, and LE, respectively. The alluvial deposit of easily weathering fine silicate minerals, the higher air temperature, plant density, and soil thickness at the downstream LE in comparison to upstream and midstream may lead to longer contact time between pore water and mineral materials, thus enhancing the silicate weathering. Because of the involvement of sulfuric acid produced by the oxidation of pyrite, carbonate weathering in the upstream and midstream did not consume atmospheric CO2, resulting in the high rate of carbonate weathering (73.9 and 75.6 t km−2 yr−1, respectively, in maximum) and potential net release of CO2 (with an upper constraint of 35.6 and 35.2 t km−2 yr−1, respectively) at the QYG and WGHS. The above results indicate the potential of the glaciated area of the Tibetan Plateau with pyrite deposits being a substantial natural carbon source, which deserves further investigation.  相似文献   
175.
176.
The North American Land Data Assimilation System project phase 2 (NLDAS‐2) has run four land surface models for a 30‐year (1979–2008) retrospective period. Land surface evapotranspiration (ET) is one of the most important model outputs from NLDAS‐2 for investigating land–atmosphere interaction or to monitor agricultural drought. Here, we evaluate hourly ET using in situ observations over the Southern Great Plains (Atmospheric Radiation Measurement/Cloud and Radiation Testbed network) for 1 January 1997–30 September 1999 and daily ET u‐sing in situ observations at the AmeriFlux network over the conterminous USA for an 8‐year period (2000–2007). The NLDAS‐2 models compare well against observations, with the National Centers for Environmental Prediction's Noah land surface model performing best, followed, in order, by the Variable Infiltration Capacity, Sacramento Soil Moisture Accounting, and Mosaic models. Daily evaluation across the AmeriFlux network shows that for all models, performance depends on season and vegetation type; they do better in spring and fall than in winter or summer and better for deciduous broadleaf forest and grasslands than for croplands or evergreen needleleaf forest. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
177.
178.
179.
Differentiation of the continental crust is the result of complex interactions between a large number of processes, which govern partial melting of the deep crust, magma formation and segregation, and magma ascent to significantly higher crustal levels. The anatectic metasedimentary rocks exposed in the Southern Marginal Zone of the Limpopo Belt represent an unusually well‐exposed natural laboratory where the portion of these processes that operate in the deep crust can be directly investigated in the field. The formation of these migmatites occurred via absent incongruent melting reactions involving biotite, which produced cm‐ to m‐scale, K2O‐poor garnet‐bearing stromatic leucosomes, with high Ca/Na ratios relative to their source rocks. Field investigation combined with geochemical analyses, and phase equilibrium modelling designed to investigate some aspects of disequilibrium partial melting show that the outcrop features and compositions of the leucosomes suggest several steps in their evolution: (1) Melting of a portion of the source, with restricted plagioclase availability due to kinetic controls, to produce a magma (melt + entrained peritectic minerals in variable proportions relative to melt); (2) Segregation of the magma at near peak metamorphic conditions into melt accumulation sites (MAS), also known as future leucosome; (3a) Re‐equilibration of the magma with a portion of the bounding mafic residuum via chemical diffusion (H2O, K2O), which triggers the co‐precipitation of quartz and plagioclase in the MAS; (3b) Extraction of melt‐dominated magma to higher crustal levels, leaving peritectic minerals entrained from the site of the melting reaction, and the minerals precipitated in the MASs to form the leucosome in the source. The key mechanism controlling this behaviour is the kinetically induced restriction of the amount of plagioclase available to the melting reaction. This results in elevated melt H2O and K2O and chemical potential gradient for these components across the leucosome/mafic residuum contact. The combination of all of these processes accurately explains the composition of the K2O‐poor leucosomes. These findings have important implications for our understanding of melt segregation in the lower crust and minimum melt residency time which, according to the chemical modelling, is <5 years. We demonstrate that in some migmatitic granulites, the leucosomes constitute a type of felsic refractory residuum, rather than evidence of failed magma extraction. This provides a new insight into the ways that source heterogeneity may control anatexis.  相似文献   
180.
Riparian plants can adapt their water uptake strategies based on climatic and hydrological conditions within a river basin. The response of cold-alpine riparian trees to changes in water availability is poorly understood. The Lhasa River is a representative cold-alpine river in South Tibet and an under-studied environment. Therefore, a 96 km section of the lower Lhasa River was selected for a study on the water-use patterns of riparian plants. Plant water, soil water, groundwater and river water were measured at three sites for δ18O and δ2H values during the warm-wet and cold-dry periods in 2018. Soil profiles differed in isotope values between seasons and with the distance along the river. During the cold-dry period, the upper parts of the soil profiles were significantly affected by evaporation. During the warm-wet period, the soil profile was influenced by precipitation infiltration in the upper reaches of the study area and by various water sources in the lower reaches. Calculations using the IsoSource model indicated that the mature salix and birch trees (Salix cheilophila Schneid. and Betula platyphylla Suk.) accessed water from multiple sources during the cold-dry period, whereas they sourced more than 70% of their requirement from the upper 60–80 cm of the soil profile during the warm-wet period. The model indicated that the immature rose willow tree (Tamarix ramosissima Ledeb) accessed 66% of its water from the surface soil during the cold-dry period, but used the deeper layers during the warm-wet period. The plant type was not the dominant factor driving water uptake patterns in mature plants. Our findings can contribute to strategies for the sustainable development of cold-alpine riparian ecosystems. It is recommended that reducing plantation density and collocating plants with different rooting depths would be conducive to optimal plant growth in this environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号