全文获取类型
收费全文 | 1619篇 |
免费 | 278篇 |
国内免费 | 570篇 |
专业分类
测绘学 | 31篇 |
大气科学 | 221篇 |
地球物理 | 345篇 |
地质学 | 1343篇 |
海洋学 | 296篇 |
天文学 | 10篇 |
综合类 | 63篇 |
自然地理 | 158篇 |
出版年
2024年 | 10篇 |
2023年 | 45篇 |
2022年 | 42篇 |
2021年 | 58篇 |
2020年 | 63篇 |
2019年 | 68篇 |
2018年 | 77篇 |
2017年 | 99篇 |
2016年 | 109篇 |
2015年 | 86篇 |
2014年 | 91篇 |
2013年 | 155篇 |
2012年 | 108篇 |
2011年 | 95篇 |
2010年 | 89篇 |
2009年 | 135篇 |
2008年 | 108篇 |
2007年 | 123篇 |
2006年 | 123篇 |
2005年 | 100篇 |
2004年 | 86篇 |
2003年 | 69篇 |
2002年 | 71篇 |
2001年 | 53篇 |
2000年 | 57篇 |
1999年 | 47篇 |
1998年 | 46篇 |
1997年 | 26篇 |
1996年 | 24篇 |
1995年 | 37篇 |
1994年 | 32篇 |
1993年 | 24篇 |
1992年 | 20篇 |
1991年 | 18篇 |
1990年 | 18篇 |
1989年 | 13篇 |
1988年 | 11篇 |
1987年 | 5篇 |
1986年 | 3篇 |
1985年 | 8篇 |
1984年 | 4篇 |
1983年 | 2篇 |
1982年 | 2篇 |
1981年 | 2篇 |
1980年 | 3篇 |
1978年 | 1篇 |
1973年 | 1篇 |
排序方式: 共有2467条查询结果,搜索用时 46 毫秒
31.
侏罗纪时东南亚大陆上形成两个大盆地,西为海相盆地,东为陆相红盆。白垩纪时大盆地闭合或解体。第三纪出现裂谷盆地,其发育受燕山期构造格局控制;拉张应力自南向北变弱,裂谷发育自南向北变晚。第四纪为上叠盆地阶段。滇西与泰国各时期盆地的对比研究有助于更好地认识其演化特征,恢复东南亚大陆侏罗纪以来不断碎裂、局部解体的历史。 相似文献
32.
西天山阿吾拉勒成矿带群吉A型花岗岩成因、地质意义及成矿潜力评价 总被引:1,自引:0,他引:1
群吉钠长斑岩具有富Si O2(65.3%~76.9%)、Na_2O+K_2O(6.02%~9.66%)、FeOT/Mg O(6.01~21.4),中等的A/CNK(0.90~1.04),低Al2O3(9.82%~15.64%)、Ca O(0.47%~1.84%)、MgO(0.13%~0.45%)的主量元素特征,同时富集Th、U、Ta、Zr、Hf等HFSE,轻稀土富集、重稀土相对平坦分布。高的Zr(468×10~(-6)~707×10~(-6))、Y(20.7×10~(-6)~91.4×10~(-6))、Nb(21.3×10~(-6)~57.7×10~(-6))、Ga(11.2×10~(-6)~19.7×10~(-6))以及Ce(36.7×10~(-6)~98.2×10~(-6))和Zr饱和温度(880℃)特征表明岩体具有A型花岗岩的特征。群吉钠长斑岩的ISr值较低(0.70203~0.70549),εNd(t=303Ma)为正值(+4.1~+5.2),同时全岩Pb同位素落于地幔和下地壳之间的区域,表明形成该岩体的源岩可能为下地壳玄武质岩石。地壳的伸展引起了软流圈地幔底侵,在异常地温梯度下被底侵的玄武质下地壳发生部分熔融,形成该地区晚古生代A型花岗岩岩体。群吉地区A型花岗岩的发现,表明在晚石炭纪西天山阿吾拉勒地区为伸展的构造背景,同时岩石圈的拆沉、下地壳的加厚在晚石炭纪就已发生。群吉钠长斑岩中有局部或全部的铜矿化,该岩体是阿吾拉勒成矿带主要的含矿岩体。钠长斑岩基质中含有自形-半自形的黄铁矿及斑岩中锆石较低的Ce4+/Ce3+(19.5~93.0,平均为39.6),反映了岩浆低氧逸度的成岩条件,这种条件使得S从高价态变为了低价态,有利于成矿。岩浆中Zr的含量与岩浆中的水分含量成反比,H2O的加入也可以使岩浆具有高的氧逸度,因此岩浆中高的Zr含量及低的氧逸度,说明岩浆的源区为"干"体系,H2O的加入很少,而较"干"的体系对形成大型斑岩矿床不利。 相似文献
33.
The new procedure of earthquake hazard evaluation developed by Kijko and Sellevoll is tested and applied for the border region of Czechoslovakia and Poland. The new method differs from the conventional approach. It incorporates the uncertainty of earthquake magnitudes, and accepts mixed data containing only large historical events and recent, complete catalogues. Seismic hazard has been calculated for nine regions determined in the border area. In the investigated area, data of historical catalogues are uncertain or, in many cases, the epicentral intensities are unknown. Thus, a number of assumptions have to be adopted in data preparation of catalogues since the year 1200. The calculated values of parameters b in the Gutenberg-Richter frequency-intensity relation as well as the return periods, seem to be reasonable and are generally confirmed by the results obtained from catalogues for the last 80–130 years. 相似文献
34.
The Rozvadov Pluton is a complex of mainly Variscan granitoid rocks situated near the Bohemian-Bavarian border between Bärnau, Tachov, Rozvadov and Waidhaus, 25 km ESE of the KTB site. Five mappable units can be distinguished, which intruded as folows: (1) slightly deformed leucocratic meta-aplite/metapegmatite dykes with garnet and tourmaline; (2) a complex of cordierite-bearing granitoids, which have been divided into three facies (a) biotite granite with cordierite (at the margin of the complex), (b) biotite-cordierite granite and (c) cordierite tonalite (in the centre of the complex; (3) fine-grained biotite granite of the Rozvadov type with associated pegmatite bodies; (4) two-mica Bärnau granite; and (5) geochemically specialized albite-zinnwaldite-topaz granite (Kríový kámen/Kreuzstein granite) with indications of Sn-Nb-Ta mineralization and associated phosphorus-rich pegmatite cupolas. Rare earth element data suggest that meta-aplite/pegmatite dykes are the result of a batch partial melting process, whereas the compositional variation of the other rock types was mainly controlled by fractional crystallization. The genesis of the cordierite granitoid suite is best explained in terms of a batch melting of metapelitic source followed by crystallization of a cordierite-rich cumulate and K-feldspar enriched melt. The leucocratic pluton constituents — the meta-aplites and the Bärnau and Kíový kámen granites are rich in phosphorus (0.5–0.8%). The main carriers of phosphorus are alkali feldspars, especially K-feldspar (up to 0.8% P2O5). The presence of P-rich leucocratic granites is one of the features distinguishing the Variscan granitoids within the Moldanubian zone from the nearly contemporaneous granitoids in the Saxothuringian zone. 相似文献
35.
36.
Simulation of Formation and Spreading of Salinity Minimum Associated with NPIW Using a High-Resolution Model 总被引:1,自引:2,他引:1
A series of numerical experiments were conducted with a high-resolution (eddy-permitting) North Pacific model to simulate
the formation and spreading of the salinity minimum associated with the North Pacific Intermediate Water (NPIW). It was found
that two factors are required to simulate a realistic configuration of the salinity minimum: a realistic wind stress field
and small-scale disturbances. The NCEP reanalyzed wind stress data lead to better results than the Hellerman and Rosenstein
wind stress data, due to the closer location of the simulated Oyashio and Kuroshio at the western boundary. Small-scale disturbances
formed by relaxing computational diffusivity included in the advection scheme promote the large-scale isopycnal mixing between
the Oyashio and Kuroshio waters, simulating a realistic configuration of the salinity minimum. A detailed analysis of the
Oyashio water transport was carried out on the final three-year data of the experiment with reduced computational diffusivity.
Simulated transport of the Kuroshio Extension in the intermediate layer is generally smaller than the observed value, while
those of the Oyashio and the flow at the subarctic front are comparable to the observed levels. In the Oyashio-Kuroshio interfrontal
zone the zonally integrated southward transport of the Oyashio water (140–155°E) is borne by the eddy activity, though the
time-mean flow reveals the existence of a coastal Oyashio intrusion. In the eastern part (155°E–180°) the zonally integrated
transport of the Oyashio water indicates a southward peak at the southern edge of the Kuroshio Extension, which corresponds
to the branching of the recirculating flow from the Kuroshio Extension.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
37.
38.
R. A. Schweickert M. M. Lahren K. D. Smith J. F. Howle G. Ichinose 《Tectonophysics》2004,392(1-4):303
Dextral transtensional deformation is occurring along the Sierra Nevada–Great Basin boundary zone (SNGBBZ) at the eastern edge of the Sierra Nevada microplate. In the Lake Tahoe region of the SNGBBZ, transtension is partitioned spatially and temporally into domains of north–south striking normal faults and transitional domains with conjugate strike-slip faults. The normal fault domains, which have had large Holocene earthquakes but account only for background seismicity in the historic period, primarily accommodate east–west extension, while the transitional domains, which have had moderate Holocene and historic earthquakes and are currently seismically active, primarily record north–south shortening. Through partitioned slip, the upper crust in this region undergoes overall constrictional strain.Major fault zones within the Lake Tahoe basin include two normal fault zones: the northwest-trending Tahoe–Sierra frontal fault zone (TSFFZ) and the north-trending West Tahoe–Dollar Point fault zone. Most faults in these zones show eastside down displacements. Both of these fault zones show evidence of Holocene earthquakes but are relatively quiet seismically through the historic record. The northeast-trending North Tahoe–Incline Village fault zone is a major normal to sinistral-oblique fault zone. This fault zone shows evidence for large Holocene earthquakes and based on the historic record is seismically active at the microearthquake level. The zone forms the boundary between the Lake Tahoe normal fault domain to the south and the Truckee transition zone to the north.Several lines of evidence, including both geology and historic seismicity, indicate that the seismically active Truckee and Gardnerville transition zones, north and southeast of Lake Tahoe basin, respectively, are undergoing north–south shortening. In addition, the central Carson Range, a major north-trending range block between two large normal fault zones, shows internal fault patterns that suggest the range is undergoing north–south shortening in addition to east–west extension.A model capable of explaining the spatial and temporal partitioning of slip suggests that seismic behavior in the region alternates between two modes, one mode characterized by an east–west minimum principal stress and a north–south maximum principal stress as at present. In this mode, seismicity and small-scale faulting reflecting north–south shortening concentrate in mechanically weak transition zones with primarily strike-slip faulting in relatively small-magnitude events, and domains with major normal faults are relatively quiet. A second mode occurs after sufficient north–south shortening reduces the north–south Shmax in magnitude until it is less than Sv, at which point Sv becomes the maximum principal stress. This second mode is then characterized by large earthquakes on major normal faults in the large normal fault domains, which dominate the overall moment release in the region, producing significant east–west extension. 相似文献
39.
Yuan-Bao Wu Shan Gao Hong-Fei Zhang Sai-Hong Yang Wen-Fang Jiao Yong-Sheng Liu Hong-Lin Yuan 《Contributions to Mineralogy and Petrology》2008,155(1):123-133
The Hong’an area (western Dabie Mountains) is the westernmost terrane in the Qinling-Dabie-Sulu orogen that preserves UHP
eclogites. The ages of the UHP metamorphism have not been well constrained, and thus hinder our understanding of the tectonic
evolution of this area. LA-ICPMS U–Pb age, trace element and Hf isotope compositions of zircons of a granitic gneiss and an
eclogite from the Xinxian UHP unit in the Hong’an area were analyzed to constrain the age of the UHP metamorphism. Most zircons
are unzoned or show sector zoning. They have low trace element concentrations, without significant negative Eu anomalies.
These metamorphic zircons can be further subdivided into two groups according to their U–Pb ages, and trace element and Lu–Hf
isotope compositions. One group with an average age of 239 ± 2 Ma show relatively high and variable HREE contents (527 ≥ LuN ≥ 14) and 176Lu/177Hf ratios (0.00008–0.000931), indicating their growth prior to a great deal of garnet growth in the late stage of continental
subduction. The other group yields an average age of 227 ± 2 Ma, and shows consistent low HREE contents and 176Lu/177Hf ratios, suggesting their growth with concurrent garnet crystallization and/or recrystallization. These two groups of age
are taken as recording the time of prograde HP to UHP and retrograde UHP–HP stages, respectively. A few cores have high Th/U
ratios, high trace element contents, and a clear negative Eu anomaly. These features support a magmatic origin of these zircon
cores. The upper intercept ages of 771 ± 86 and 752 ± 70 Ma for the granitic gneiss and eclogite, respectively, indicate that
their protoliths probably formed as a bimodal suite in rifting zones in the northern margin of the Yangtze Block. Young Hf
model ages (T
DM1) of magmatic cores indicate juvenile (mantle-derived) materials were involved in their protolith formation.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
40.