首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5311篇
  免费   744篇
  国内免费   1006篇
测绘学   259篇
大气科学   866篇
地球物理   1582篇
地质学   2375篇
海洋学   949篇
天文学   139篇
综合类   261篇
自然地理   630篇
  2024年   26篇
  2023年   78篇
  2022年   142篇
  2021年   183篇
  2020年   176篇
  2019年   184篇
  2018年   122篇
  2017年   204篇
  2016年   221篇
  2015年   262篇
  2014年   338篇
  2013年   289篇
  2012年   281篇
  2011年   358篇
  2010年   252篇
  2009年   375篇
  2008年   413篇
  2007年   378篇
  2006年   326篇
  2005年   294篇
  2004年   260篇
  2003年   210篇
  2002年   219篇
  2001年   183篇
  2000年   217篇
  1999年   169篇
  1998年   177篇
  1997年   140篇
  1996年   106篇
  1995年   88篇
  1994年   79篇
  1993年   59篇
  1992年   49篇
  1991年   33篇
  1990年   28篇
  1989年   37篇
  1988年   24篇
  1987年   12篇
  1986年   13篇
  1985年   14篇
  1984年   11篇
  1983年   7篇
  1982年   3篇
  1981年   3篇
  1980年   4篇
  1979年   3篇
  1978年   6篇
  1977年   2篇
  1976年   1篇
  1954年   2篇
排序方式: 共有7061条查询结果,搜索用时 31 毫秒
101.
Absorption of solar radiation within the thermal molecular sublayer of the ocean can modify the temperature difference across the cool skin as well as the air-sea gas transfer. Our model of renewal type is based on the assumption that the thermal and diffusive molecular sublayers below the ocean surface undergo cyclic growth and destruction, the heat and gas transfer between the successive burst events are performed by molecular diffusion. The model has been upgraded to include heating due to solar radiation. The renewal time is parameterized as a function of the surface Richardson number and the Keulegan number. A Rayleigh number criterion characterizes the convective instability of the cool skin under solar heating. Under low wind speed conditions, the solar heating can damp the convective instability, strongly increasing the renewal time and correspondingly decreasing the interfacial gas exchange. In the ocean, an additional convective instability caused by salinity flux due to evaporation becomes of importance in such cases. The new parameterization is compared with the cool skin data obtained in the western equatorial Pacific during the Tropical Ocean Global Atmosphere Coupled Ocean Atmosphere Response Experiment in February 1993. In combination with a model of the diurnal thermocline it describes main features of the field data both in nighttime and daytime. Under low wind speed conditions (< 5 m s-1) diurnal variations of the sea surface temperature due to the formation of a diurnal thermocline were substantially larger than those across the cool skin. Under wind speeds > 5 m s-1, diurnal variations of the surface temperature due to the variations of the thermal molecular sublayer become more important.  相似文献   
102.
Water and sediment samples collected from the Gomti River, a tributary of the Ganges River system, during the postmonsoon season have been analyzed to estimate major elemental chemistry. Water chemistry of the River Gomti shows almost monotonous spatial distribution of various chemical species, especially because of uniform presence of alluvium Dun gravels throughout the basin. The river annually transports 0.34×106 tonnes of total suspended material (TSM) and 3.0×106 tonnes of total dissolved solids (TDS), 69 percent of which is accounted for by bicarbonate ions only. Samples collected downstream of the city of Lucknow show the influence of anthropogenic loadings for a considerable distance in the river water. Na+, Cl, and SO4 2– concentrations build up downstream. The bed sediment chemistry is dominated by Si (36 percent), reflecting a high percentage of detrital quartz, which makes up about 74 percent of the mineralogy of the bed sediments in the River Gomti. The average Kjeldahl nitrogen concentration (234 g/g) indicates indirectly the amount of organic matter in the sediments. The Hg concentration in sediments has been found to be higher (average 904 ppb) than the background value. The suspended sediments are well sorted, very finely skewed, and extremely leptokurtic, indicating a low energy condition of flow in the Gomti River. The influence of chemical loads in the Gomti has been found to be small or nonexistent on the Ganges River, perhaps because the water discharge of the Gomti (1.57 percent) to the Ganges is quite low.  相似文献   
103.
In a simplified model of the Earth-Moon-Sun system based on the restricted circular 3-dimensional 3-body problem, it is possible to find numerically a set of 8 periodic orbits whose time evolutions closely resemble that of the Moon's orbit. These orbits have a period of 223 synodic months (i.e. the period of the Saros cycle known for more than two millennia as a means of predicting eclipses), and are characterized by a secular rotation of the argument of perigee . Periodic orbits of longer durations exhibiting this last feature are very abundant in Earth-Moon-Sun dynamical models. Their arrangement in the space of the mean orbital elements- for various values of the lunar mean motion is presented.  相似文献   
104.
The self-potential method can be applied to evaluate the degree of water seepage into earth or rockfill dams. Spatial distribution of measured self-potential data can indicate possible anomalous water flow. Phenomena, such as piping, can be modelled as cylindrical bodies. Internal erosion can develop structures, which can be represented by a sphere or point source. Differential settlement in the dam structure occasionally creates horizontal fractures, which require equivalent geometrical body formula. An equation, which allows the calculation of a self-potential profile over a horizontal contact, was developed. This equation can also be applied to the inspection of water flow into horizontal drainage filters. When inverse interpretation returns bodies of relatively small amplitudes, then their probability can be tested statistically. A test, based on cross-correlation between a modelled curve and field data, can be used to evaluate their existence at a given probability level. An acceptance criterion is computed, using the concept of likelihood coefficient. The equation was applied to two case histories. The first is an example of water flow evaluation into a horizontal drainage filter. Several anomalous bodies were interpreted from residual self-potential data, i.e. from the difference between the theoretical response of the filter and the measured self-potential values, then, most of the interpreted bodies were statistically tested. The second case deals with detection and evaluation of a horizontal fissure. The interpreted parameters of the detected body corresponded well to a horizontal fracture found when the water level in the reservoir was lowered.  相似文献   
105.
The history of variations in water level of Lake Constance, as reconstructed from sediment and pollen analysis of a sediment sequence from the archaeological site of Arbon-Bleiche 3, shows an abrupt rise in lake level dendrochronologically dated to 5375 yr ago (5320 yr relative to AD 1950). This event, paralleled by the destruction of the Neolithic village by fire, provoked the abandonment of this prehistoric lake-shore location established in the former shallow bay of Arbon-Bleiche, and was the last of a series of three episodes of successively higher lake level, the first occurring at 5600-5500 cal yr B.P. The dendrochronologically dated rise event was synchronous with an abrupt increase in atmospheric 14C. This supports the hypothesis of an abrupt climate change forced by varying solar activity. Moreover, the three successive episodes of higher lake level between 5600 and 5300 cal yr B.P. at Arbon-Bleiche 3 coincided with climatic cooling and/or changes in moisture conditions in various regions of both hemispheres. This period corresponds to the mid-Holocene climate transition (onset of the Neoglaciation) and suggests inter-hemispheric linkages for the climate variations recorded at Arbon-Bleiche 3. This mid-Holocene climate reversal may have resulted from complex interactions between changes in orbital forcing, ocean circulation and solar activity. Finally, despite different seasonal hydrological regimes, the similarities between lake-level records from Lake Constance and from Jurassian lakes over the mid-Holocene period point to time scale as a crucial factor in considering the possible impact of climate change on environments.  相似文献   
106.
A model for the carbon and sulfur cycles across the Permian–Triassic boundary has been constructed from carbon and sulfur isotopic data. Results indicate a drop in global organic matter burial, the formation of an anoxic deep ocean, and a large drop in atmospheric oxygen over the time span 270 to 240 Ma. Much of these changes were probably due to a drop in terrestrial productivity and preservation and an increase in global aridity.  相似文献   
107.
A channel account approach is proposed to estimate longitudinal changes in runoff along large river systems. This new method provides a quantitative basis for describing the fluvial transport of suspended particulate material and dissolved substances. This method includes an evaluation of basic elements of water balance in separate sections of the river network and subsequent correction of channel accounting equations for the entire system using a maximum likelihood principle. To calculate water discharges of tributaries that have no hydrological information, structural analysis of river network is performed. This approach provides less error in comparison with traditional methods of estimating lateral inflow. The method is used to trace water discharge with increasing distance along the Lena river basin and to evaluate the contribution of geologically and lithologically uneven sub-basins in water discharge formation during a summer low water period.  相似文献   
108.
Over time periods of 106 years and longer, atmospheric carbon dioxide content is largely controlled by a balance between silicate rock weathering and CO2 sources (degassing from the Earth plus net organic carbon oxidation). Vegetation cover can affect silicate rock weathering rates by increasing soil CO2 content, stabilizing soil cover, and producing organic acids. Forests absorb more solar radiation than most other ecosystems; this tends to warm Earth's climate, especially outside of the tropics; this warmth would tend to increase silicate rock weathering rates. Here, we develop preliminary parameterizations of this effect that could be incorporated into carbonate–silicate cycle models, based on the results of general circulation model simulations.  相似文献   
109.
Nitrogen cycle is an important bio-geochemical process in the environment. Measurement of the total nitrogen (TN) is a routine experiment in agriculture, biology and environmental sciences. The Kjeldahl method (KM) and elemental analyzer method (EA) are both commonly used to determine TN. Total nitrogen by EA is the sum of nitrate (NO3), nitrite (NO2), organic nitrogen and ammonia. Total nitrogen by KM (TKN) is made up of both organic nitrogen and ammonia. A comparative study focused on the two methods is conducted by analysis of TN in 97 samples from the sediment sequence of Gouchi, a salt lake in North China. KM presents a higher degree of accuracy than EA with a standard deviation of 0.007 vs. 0.024. With the presence of nitrate and/or nitrite nitrogen, however, measurement by KM is considerably lower than that by EA. Therefore, for samples from lake sediment sequences or soils in North China, KM is inapplicable to determining TN because of usually high contents of nitrous salt. Despite the inconsistency, use of both methods to the same samples makes sense in reconstructions of climatic and environmental changes from lake sediments. In Lake Gouchi, the contents of nitrate and nitrite nitrogen vary from 1.40% in the lower part of the sequence to 14.77% in the uppermost part, suggesting a gradual evolution process from a fresh water lake to the present-day salt lake.  相似文献   
110.
The Permian Cedar Mesa Sandstone represents the product of at least 12 separate aeolian erg sequences, each bounded by regionally extensive deflationary supersurfaces. Facies analysis of strata in the White Canyon area of southern Utah indicates that the preserved sequences represent erg‐centre accumulations of mostly dry, though occasionally water table‐influenced aeolian systems. Each sequence records a systematic sedimentary evolution, enabling phases of aeolian sand sea construction, accumulation, deflation and destruction to be discerned and related to a series of underlying controls. Sand sea construction is signalled by a transition from damp sandsheet, ephemeral lake and palaeosol deposition, through a phase of dry sandsheet deposition, to the development of thin, chaotically arranged aeolian dune sets. The onset of the main phase of sand sea accumulation is reflected by an upward transition to larger‐scale, ordered sets which represent the preserved product of climbing trains of sinuous‐crested transverse dunes with original downwind wavelengths of 300–400 m. Regularly spaced reactivation surfaces indicate periodic shifts in wind direction, which probably occurred seasonally. Compound co‐sets of cross strata record the oblique migration of superimposed slipfaced dunes over larger, slipfaceless draa. Each aeolian sequence is capped by a regionally extensive supersurface characterized by abundant calcified rhizoliths and bioturbation and which represents the end product of a widespread deflation episode whereby the accumulation surface was lowered close to the level of the water table as the sand sea was progressively cannibalized by winds that were undersaturated with respect to their potential carrying capacity. Aeolian sequence generation is considered to be directly attributable to cyclical changes in climate and related changes in sea level of probable glacio‐eustatic origin that characterize many Permo‐Carboniferous age successions. Sand sea construction and accumulation occurred during phases of increased aridity and lowered sea level, the main sand supply being former shallow marine shelf sediments that lay to the north‐west. Sand sea deflation and destruction would have commenced at, or shortly after, the time of maximum aridity as the available sand supply became exhausted. Restricted episodes of non‐aeolian accumulation would have occurred during humid (interglacial) phases, accumulation and preservation being enabled by slow rises in the relative water table. Subsidence analysis within the Paradox Basin, together with comparisons to other similar age successions suggests that the climatic cycles responsible for generating the Cedar Mesa erg sequences could be the product of 413 000 years so‐called long eccentricity cycles. By contrast, annual advance cycles within the aeolian dune sets indicate that the sequences themselves could have accumulated in just a few hundred years and therefore imply that the vast majority of time represented by the Cedar Mesa succession was reserved for supersurface development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号