首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   142篇
  免费   10篇
  国内免费   33篇
测绘学   19篇
地球物理   5篇
地质学   154篇
海洋学   2篇
天文学   1篇
综合类   2篇
自然地理   2篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2019年   8篇
  2018年   3篇
  2017年   6篇
  2016年   10篇
  2015年   2篇
  2014年   15篇
  2013年   4篇
  2012年   9篇
  2011年   18篇
  2010年   15篇
  2009年   9篇
  2008年   14篇
  2007年   9篇
  2006年   7篇
  2005年   7篇
  2004年   5篇
  2003年   4篇
  2002年   4篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1998年   6篇
  1996年   5篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1986年   1篇
排序方式: 共有185条查询结果,搜索用时 125 毫秒
11.
“准地籍测量”是在已有的地形图上根据地籍台帐于实地标绘宗地界域线,划分街道、街坊、调查区及编号,调查宗地座落、地名、门牌号码、房屋结构及层数等;基于这种测量模式,其成果以传统的图、表展示已很难适应。实践运用MGE地理信息基础平台开发出的地籍信息管理系统,其准地籍测量约70%的宗地成果与实际确权一致,不失为一种快速、经济有效的地籍测量模式。  相似文献   
12.
杨宏城 《云南地质》2007,26(4):416-420
水泄铜钴矿区地质条件较为复杂,控矿因素较多,通过分析认为主要受断层及岩性控制,地层初始富集,构造及区域变质作用提供通道及热源。水的循环、溶解作用形成热卤水成矿。  相似文献   
13.
塔里木板块新元古代地层化学蚀变指数研究及其意义   总被引:3,自引:4,他引:3  
本文应用化学蚀变指数(CIA)方法,研究新疆库鲁克塔格地区新元古代地层,并探讨沉积时期的气候环境。贝义西组总体 CIA 值较低,介于51~56之间,具冰期环境特征。照壁山组 CIA 值为60左右,表明气候有所变暖。阿勒通沟组的CIA 值变化范围在48~61之间,顶部突变为69~71,说明阿勒通沟期经历了另一次寒冷事件,并以温暖环境结束。其上的特瑞爱肯组 CIA 值介于49~53之间,说明第三次经历寒冷干燥的气候环境。扎莫克提组,育肯沟组和水泉组的 CIA 均值为65,反映温暖条件下的沉积环境。新元古代末期汉格尔乔克组 CIA 值下降为56,暗示第四次出现寒冷气候环境。以上特征表明新疆库鲁克塔格地区新元古代的气候环境出现四次冷热交替变化。其中尤为重要的是阿勒通沟组中下部应为寒冷气候环境,而顶部突变为温暖气候环境,因此该组反映了一次明确的从冷到暖的气候变化过程,可以作为贝义西冰期和特瑞爱肯冰期之间的另一次独立冰期。本文的研究成果从地球化学角度支持塔里木板块新元古代四次冰期的划分方案。通过与扬子板块新元古代冰期划分方案的对比,认为塔里木板块新元古代四次冰期的前三次均已在华南板块以冰期或寒冷环境沉积形式出现。  相似文献   
14.
何照波  刘涛  杨宗  余红平 《云南地质》2007,26(2):175-182
萨尔布拉克金矿为北疆地区重要金矿之一,位于两个一级构造单元结合部位,矿床受北西向断裂破碎带控制,走向延伸长,规模大,从地表向下氧化矿、混合矿、硫化矿分带明显。明显受构造、地层及岩性控制,属构造一热液蚀变岩型微粒金矿。  相似文献   
15.
 Diverse spherulitic and granular crystalline fabrics, perlitic textures and fabrics related to the growth and migration of vesicles occur in the Garth Tuff, a largely welded Ordovician ignimbrite. Defining the distribution of such textures helps to constrain the ignimbrite's cooling and degassing history. Suites of spherulitic and perlitic textures closely reflect variation in cooling rates. Seven facies are defined based on the style and intensity of crystallisation: (1) a medium to coarsely crystalline, equigranular facies; (2) an intensely spherulitic facies; (3) a sparsely spherulitic facies; (4) a pectinate facies; (5) a microcrystalline to cryptocrystalline, equigranular facies; (6) a lithophysal facies; and (7) a transitional perlite–pectinate facies. Textural changes from facies 1 to 5 reflect progressively higher cooling rates. Facies 1 occurs in proximal settings in the ignimbrite's core. Facies 2 to 5 successively envelop facies 1, with facies 2 becoming the dominant fabric in the ignimbrite's core in medial settings. Facies 5 is typically developed in the originally glassy perlitic zones at the ignimbrite's welded margins. Crystallisation under hydrous conditions is reflected by second-boiling textures in the sporadically developed lithophysal facies. The seventh facies reflects a subtle interplay between cooling, hydration and crystallisation which locally prevented perlitic fracturing. The distribution of amygdales reflects patterns of volatile migration and entrapment. In the lower levels of the ignimbrite, amygdales occur in irregular concentrations or rare subvertical pipe-like structures. Pipe-like structures attest to fumarolic activity while the ignimbrite was in a rheomorphic state. Amygdales are widespread and evenly distributed in the upper levels of the ignimbrite. However, the top of the welding profile is characterised by a thin, poorly vesiculated, originally vitrophyric horizon that abruptly caps an intense concentration of amygdales. Ductile and brittle fabrics developed during the upward migration of gas. Microscopic drag folds occur around some amygdales. Jigsaw-fit to clast-rotated breccias originated through both late-stage pneumatic fracturing and autobrecciation. Vaporisation of water at the flow base provided a significant source of volatiles in addition to gas released during cooling and crystallisation. Secondary alteration has enhanced or modified some fabrics. Perlitic zones were susceptible to patchy chlorite–sericite–carbonate diagenetic alteration. Diagenesis and metamorphism have contributed to the infilling of vesicles. Received: 22 August 1997 / Accepted: 24 June 1998  相似文献   
16.
Abstract: The Bulawan deposit is located in the porphyry copper belt of southwest Negros island, Philippines. Propylitic, K–feldspar, sericitic, and carbonate alteration types can be distinguished in the deposit. Propylite alteration occurs mainly in Cretaceous-Eocene andesitic lavas and agglomerates while K–feldspar, sericite and carbonate alteration types occur mostly in the Middle Miocene dacite porphyry breccia pipes and stocks which were intruded into the andesites. K-feldspar zones occur in the inner parts of the sericitized zone. Sericite alteration overprinted the propylitized and K-feldspar alteration zones, at lower temperature than epidote and chlorite in the propylitized zone. Carbonate alteration is associated with the mineralization in the center of the breccia pipes and along faults. Mineralization consists of gold-silver telluride ores that are hosted by the carbonate– and sericite-altered dacite porphyry breccia pipes. The Bulawan ores occur mainly as disseminations, but unlike many epithermal gold deposits, lack classical epithermal colloform and crustiform quartz veins. The ore minerals are sphalerite, galena, chalcopyrite, pyrite and tetrahedite-tennantite with minor amounts of electrum, calaverite, petzite, sylvanite, hessite, tellurobismuthite, coloradoite, altaite, and rucklidgeite. Electrum and telluride minerals are associated mostly with calcite and dolomite-ankerite minerals. Fluid inclusions in quartz and calcite in clasts of propylitized andesite in the breccia pipes homogenize from about 300° to 400°C while fluid inclusions in quartz, calcite and sphalerite within the dacite porphyry breccia pipes homogenize between 300° to 310°C. The ores were formed around 300°C from hydrothermal solutions with salinity of about 6. 6 wt % NaCl equivalent. The presence of sylvanite and calaverite as intergrowths with each other, and the Ag content of calaverite are consistent with the above temperature estimate. Based on paragenesis, the Bulawan deposit formed in a pyrite-stable environment, with pH between 3. 4 and 5. 5, fO2 between 10-32 to 10-30 atm, fS2 between 10-9.8 to 10-7.8 atm, fTe2 between 10-8.9 to 10-6.5 atm, and total sulfur content about 10-2.8 molal. The dominant reduced sulfur species in the ore solutions may have been H2S(aq), and the likely aqueous tellurium species were H2Te(aq) and H2TeO3(aq). The ore minerals in the Bulawan deposit were probably formed by mixing of slightly saline and low salinity fluids.  相似文献   
17.
王雅丽  崔银亮 《云南地质》2010,29(4):438-443
根据遥感构造、含矿岩性地层、岩石蚀变异常等多种遥感地质信息,采用地质异常单元统计预测方法,对毛坪铅锌矿进行多元信息成矿预测,明确了找矿方向。  相似文献   
18.
The Cretaceous–Paleogene boundary (KPgB) was dated by the 40Ar/39Ar method herein from the western interior of North America at 65.48 ± 0.12 Ma (1σ), in good agreement with other recent published estimates. For the Deccan Traps, India, new argon ages as well as others available in the literature, are assessed for reliability based on (a) statistical reliability of plateau/isochron sections and (b) freshness of material dated utilizing the alteration index method. From tholeiitic lavas from the Composite Western Ghats Section (CWGS), only six ages are found to be reliable estimates of the time of crystallization. These ages along with the magnetic polarity of the lavas agree with the geomagnetic polarity time scale (GPTS) at ∼67–64 Ma. Alkaline rocks from the Anjar area of Kutch, provide three reliable ages that suggest a hiatus in lava extrusion around KPgB. For the Rajahmundry basalts, the upper flow’s age defines its formation during chron 29n; a single age from the lower reversed polarity flow appears somewhat dichotomous when plotted against the GPTS. The reliable lava ages indicate the most voluminous (reversed polarity) sections of the CWGS were extruded at a time statistically indistinguishable from that of the KPgB. The Deccan Trap – KPgB faunal extinction hypothesis remains plausible, but must compete with the latest report, favoring a very close temporal connection (∼0.03 m.y.) between the Chixculub (Impact) Crater and the KPgB.  相似文献   
19.
Plant-derived terpenoids, long recognized as biomarkers, can help reveal the major taxonomic groups of land plants present in ancient environments, even if rocks and sediments do not preserve plant macro- or microfossils. Previous studies have used simple di- to triterpenoid ratios to reconstruct floral changes in the geologic past, but few have compared terpenoid ratios with estimates of floral composition from fossils. Further, reconstructions have not taken into account differences in biomarker production (i.e. concentration relative to leaf biomass) between different types of plants. Here, we have examined terpenoids from early Cenozoic fluvial rocks from the Bighorn Basin (Wyoming, USA), where fossil flora has been studied in detail. We analyzed the distributions of diterpenoids, triterpenoids and n-alkanes from leaf wax in a total of 43 samples from 15 stratigraphic horizons of late Paleocene (63 Ma) to early Eocene (53 Ma) in age. In nearly all samples, triterpenoids, derived from angiosperms, were significantly lower in abundance than conifer-specific diterpenoids, a finding that contrasted with plant fossil evidence for the same rocks. This suggests that di- to triterpenoid ratios severely underestimate the abundance of angiosperms in paleovegetation. Angiosperms dominated n-alkane production among modern plants, and we propose a new paleovegetation proxy based on the ratio of diterpenoids (conifers) to n-alkanes (angiosperms), corrected for lipid production estimated from extant vegetation. Using diterpenoids and alkanes, we infer the composition of paleovegetation to be similar to that inferred from plant fossils. Although the approach works well for the Bighorn Basin, we stress the new paleovegetation proxy will need to be evaluated for other time periods, communities, paleogeography and depositional environments with pollen or megafossil data available.  相似文献   
20.
Amoeboid olivine aggregates (AOAs) are the most common type of refractory inclusions in CM, CR, CH, CV, CO, and ungrouped carbonaceous chondrites Acfer 094 and Adelaide; only one AOA was found in the CBb chondrite Hammadah al Hamra 237 and none were observed in the CBa chondrites Bencubbin, Gujba, and Weatherford. In primitive (unaltered and unmetamorphosed) carbonaceous chondrites, AOAs consist of forsterite (Fa<2), Fe, Ni-metal (5-12 wt% Ni), and Ca, Al-rich inclusions (CAIs) composed of Al-diopside, spinel, anorthite, and very rare melilite. Melilite is typically replaced by a fine-grained mixture of spinel, Al-diopside, and ±anorthite; spinel is replaced by anorthite. About 10% of AOAs contain low-Ca pyroxene replacing forsterite. Forsterite and spinel are always 16O-rich (δ17,18O∼−40‰ to −50‰), whereas melilite, anorthite, and diopside could be either similarly 16O-rich or 16O-depleted to varying degrees; the latter is common in AOAs from altered and metamorphosed carbonaceous chondrites such as some CVs and COs. Low-Ca pyroxene is either 16O-rich (δ17,18O∼−40‰) or 16O-poor (δ17,18O∼0‰). Most AOAs in CV chondrites have unfractionated (∼2-10×CI) rare-earth element patterns. AOAs have similar textures, mineralogy and oxygen isotopic compositions to those of forsterite-rich accretionary rims surrounding different types of CAIs (compact and fluffy Type A, Type B, and fine-grained, spinel-rich) in CV and CR chondrites. AOAs in primitive carbonaceous chondrites show no evidence for alteration and thermal metamorphism. Secondary minerals in AOAs from CR, CM, and CO, and CV chondrites are similar to those in chondrules, CAIs, and matrices of their host meteorites and include phyllosilicates, magnetite, carbonates, nepheline, sodalite, grossular, wollastonite, hedenbergite, andradite, and ferrous olivine.Our observations and a thermodynamic analysis suggest that AOAs and forsterite-rich accretionary rims formed in 16O-rich gaseous reservoirs, probably in the CAI-forming region(s), as aggregates of solar nebular condensates originally composed of forsterite, Fe, Ni-metal, and CAIs. Some of the CAIs were melted prior to aggregation into AOAs and experienced formation of Wark-Lovering rims. Before and possibly after the aggregation, melilite and spinel in CAIs reacted with SiO and Mg of the solar nebula gas enriched in 16O to form Al-diopside and anorthite. Forsterite in some AOAs reacted with 16O-enriched SiO gas to form low-Ca pyroxene. Some other AOAs were either reheated in 16O-poor gaseous reservoirs or coated by 16O-depleted pyroxene-rich dust and melted to varying degrees, possibly during chondrule formation. The most extensively melted AOAs experienced oxygen isotope exchange with 16O-poor nebular gas and may have been transformed into magnesian (Type I) chondrules. Secondary mineralization and at least some of the oxygen isotope exchange in AOAs from altered and metamorphosed chondrites must have resulted from alteration in the presence of aqueous solutions after aggregation and lithification of the chondrite parent asteroids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号