首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   315篇
  免费   16篇
  国内免费   54篇
测绘学   9篇
大气科学   9篇
地球物理   30篇
地质学   226篇
海洋学   34篇
天文学   56篇
综合类   7篇
自然地理   14篇
  2024年   1篇
  2023年   13篇
  2022年   12篇
  2021年   9篇
  2020年   6篇
  2019年   7篇
  2018年   7篇
  2017年   10篇
  2016年   3篇
  2015年   22篇
  2014年   17篇
  2013年   21篇
  2012年   14篇
  2011年   15篇
  2010年   10篇
  2009年   31篇
  2008年   34篇
  2007年   16篇
  2006年   17篇
  2005年   16篇
  2004年   15篇
  2003年   7篇
  2002年   5篇
  2001年   8篇
  2000年   9篇
  1999年   12篇
  1998年   10篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   4篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1927年   1篇
  1905年   2篇
  1900年   3篇
  1897年   2篇
  1882年   1篇
  1880年   1篇
  1877年   1篇
  1875年   1篇
排序方式: 共有385条查询结果,搜索用时 15 毫秒
51.
Concentration of elements or element groups in a geological body is the result of multiple stages of rockforming and ore-forming geological processes.An ore-forming element group can be identified by PCA(principal component analysis)and be separated into two components using BEMD(bi-dimensional empirical mode decomposition):(1)a high background component which represents the ore-forming background developed in rocks through various geological processes favorable for mineralization(i.e.magmatism,sedimentation and/or metamorphism);(2)the anomaly component which reflects the oreforming anomaly that is overprinted on the high background component developed during mineralization.Anomaly components are used to identify ore-finding targets more effectively than ore-forming element groups.Three steps of data analytical procedures are described in this paper; firstly,the application of PCA to establish the ore-forming element group;secondly,using BEMD on the o re-forming element group to identify the anomaly components created by different types of mineralization processes; and finally,identifying ore-finding targets based on the anomaly components.This method is applied to the Tengchong tin-polymetallic belt to delineate ore-finding targets,where four targets for Sn(W)and three targets for Pb-Zn-Ag-Fe polymetallic mineralization are identified and defined as new areas for further prospecting.It is shown that BEMD combined with PCA can be applied not only in extracting the anomaly component for delineating the ore-finding target,but also in extracting the residual component for identifying its high background zone favorable for mineralization from its oreforming element group.  相似文献   
52.
53.
54.
55.
We have developed a rapid and accurate method for the determination of Mo, Sb and W in geological samples using isotope dilution inductively coupled plasma-mass spectrometry with a flow injection system (ID-FI-ICP-MS). The chemical procedure requires HF digestion of the sample with a Mo-Sb-W mixed spike, subsequent evaporation and dissolution of Mo, Sb and W from Mg and Ca fluorides with HF. Recovery yields of Mo, Sb and W in the extraction were > 94% for samples of peridotite, basalt and andesite composition, with the exception of W in samples of peridotite composition for which recovery was 81%. No matrix effects were observed in the determination of the isotope ratios of Mo, Sb and W in solutions prepared from peridotite, basalt and andesite samples down to a dilution factor of 100. Detection limits of Mo, Sb and W in silicate materials were at the several ng g−1 level. Analysis of the silicate reference materials PCC-1, DTS-1, BCR-1, BHVO-1, AGV-1 from the US Geological Survey and JP-1, JB-1, -2, -3, JA-1, -2, and -3 from the Geological Survey of Japan as well as the Smithsonian reference Allende powder yielded reliable Mo, Sb and W concentrations. The repeatability in the analysis of basalts and andesites was < 9%. This technique requires only 0.2 ml sample solution, and is therefore suitable for analyzing small and/or precious samples such as meteorites, mantle peridotites and their mineral separates.  相似文献   
56.
Geochemical patterns from two lag anomalies in the Cobar region of central New South Wales are described. The region is semi-arid, deeply weathered and some areas are covered by variable thicknesses of aeolian and alluvial transported overburden.Lag morphology and mineralogy are related to landform. In erosional landforms the surface is covered by lag, which is composed of coarse fragments derived locally from bedrock and displays varying degrees of ferruginization, together with a range of secondary pisoids. In depositional landforms the lag is less abundant and contains more pisoids. Deflation by sheetwash may lead to lag being partially buried by alluvium. In a large proportion of pisoid lag, hematite and goethite have been converted to maghemite, allowing ready separation into magnetic and non-magnetic fractions. The non-magnetic fraction is dominated by the lithic lag whereas the magnetic fraction is dominated by pisoid lag.The magnetic and non-magnetic components of the 2–11 mm lag fraction, milled to < 75 μm and subjected to HF-HNO3-HClO4 attack, give rise to distinct geochemical patterns at targets related to a variant of the Cobar style of Pb-Zn mineralization with variable silicification and to Zn mineralization in a swarm of quartz and carbonate veinlets. The patterns are influenced by metal source, lag type, surface chemical conditions and landtbrm. Differences in the correlation between metal contents in the magnetic and non-magnetic lag components, and between trace elements and Fe. indicate variable loss of Cu and Zn from the magnetic lag at some targets but retention of Pb. The presence of a readily cxtractable base metal component in the lag has implications for detecting anomalies in transported cover in the region.  相似文献   
57.
基于中国大陆中强震自动矩张量测定系统,采用虚拟中国地震台网记录的近震波形(震中距4° ~ 12°),反演了新疆于田MS7. 3 地震的矩心矩张量。结果显示,地震发震断层面参数分别为走向243° /倾角70° /滑动角- 18°,表现为1 次左旋走滑为主兼有少量正倾滑分量的事件。矩心在水平方向上位于震中(36. 123°N,82. 499°E)以东约13 km,矩心深度约10 km。总标量地震矩M0为3. 05 × 1019N·m,换算成矩震级MW6. 92,推断震源破裂时大部分能量释放的持续时间约14s。同时探讨了自动矩张量测定系统在未来地震灾情预判中的重要作用。  相似文献   
58.
A lot of paleoenvironmental surveys have been carried out in the Alpine region to elucidate glacier extension during the Last Glacial or the rmian (115 - 12 ka BP). However, the evidence of past glaciations differs greatly between Western and Eastern Alps, while contrast between Southern and Northern Alps is not evident. The main purpose of this paper is to interpret variability of humidity during the last interglacial-glacial cycle in the Alpine region, based on results of various surveys performed in the Alpine region. Results show that distribution of moisture throughout the Alps was most even during the Late rmian, while precipitation was mainly concentrated in the (North)Western Alps during the Early rmian and in the (North)Western and along all the Southern Alps during the Middle rmian. The Eastern Alps were rather dry during both episodes. Such moisture distribution can be explained by paths of prevailing winds. Moisture distribution is directly linked with atmospheric and oceanic circulation.  相似文献   
59.
The recently discovered Zhuxi W–Cu ore deposit is located within the Taqian–Fuchun Ore Belt in the southeastern edge of the Yangtze Block, South China. Its inferred tungsten resources, based on new exploration data, are more than 280 Mt by 2016. At least three paragenetic stages of skarn formation and ore deposition have been recognized: prograde skarn stage; retrograde stage; and hydrothermal sulfide stage. Secondly, greisenization, marmorization and hornfels formation are also observed. Scheelite and chalcopyrite are the dominant metal minerals in the Zhuxi deposit and their formation was associated with the emplacement of granite stocks and porphyry dykes intruded into the surrounding Carboniferous carbonate sediments (Huanglong and Chuanshan formations) and the Neoproterozoic slate and phyllites. The scheelite was mostly precipitated during the retrograde stage, whereas the chalcopyrite was widely precipitated during the hydrothermal sulfide stage. A muscovite 40Ar/39Ar plateau age of about 150 Ma is interpreted as the time of tungsten mineralization and molybdenite Re–Os model ages ranging from 145.9 ± 2.0 Ma to 148.7 ± 2.2 Ma (for the subsequent hydrothermal sulfide stage of activity) as the time of the copper mineralization. Our new molybdenite Re–Os and muscovite 40Ar/39Ar dating results, along with previous zircon U–Pb age data, indicate that the hydrothermal activity from the retrograde stage to the last hydrothermal sulfide stage lasted up to 5 Myr, from 150.6 ± 1.5 to 145.9 ± 1 Ma, and is approximately coeval or slightly later than the emplacement of the associated granite porphyry and biotite granite. The new ages reported here confirm that the Zhuxi tungsten deposit represents one of the Mesozoic magmatic–hydrothermal mineralization events that took place in South China in a setting of lithospheric extension during the Late Jurassic (160–150 Ma). It is suggested that mantle material played a role in producing the Zhuxi W–Cu mineralization and associated magmatism.  相似文献   
60.
The large low-grade Piaotang W–Sn deposit in the southern Jiangxi tungsten district of the eastern Nanling Range, South China, is related to a hidden granite pluton of Jurassic age. The magmatic-hydrothermal system displays a zonation from an inner greisen zone to quartz veins and to peripheral veinlets/stringers (Five-floor zonation model). Most mineralization is in quartz veins with wolframite > cassiterite. The hidden granite pluton in underground exposures comprises three intrusive units, i.e. biotite granite, two-mica granite and muscovite granite. The latter unit is spatially associated with the W–Sn deposit.Combined LA-MC-ICP-MS U–Pb dating of igneous zircon and LA-ICP-MS U–Pb dating of hydrothermal cassiterite are used to constrain the timing of granitic magmatism and hydrothermal mineralization. Zircon from the three granite units has a weighted average 206Pb/238U age of 159.8 ± 0.3 Ma (2 σ, MSWD = 0.3). The cathodoluminescence (CL) textures indicate that some of the cassiterite crystals from the wolframite-cassiterite quartz vein system have growth zonations, i.e. zone I in the core and zone II in the rim. Dating on cassiterite (zone II) yields a weighted average 206Pb/238U age of 159.5 ± 1.5 Ma (2 σ, MSWD = 0.4), i.e. the magmatic and hydrothermal systems are synchronous. This confirms the classical model of granite-related tin–tungsten mineralization, and is against the view of a broader time gap of >6 Myr between granite magmatism and W–Sn mineralization which has been previously proposed for the southern Jiangxi tungsten district. The elevated trace element concentrations of Zr, U, Nb, Ta, W and Ti suggest that cassiterite (zone II) formed in a high-temperature quartz vein system related to the Piaotang granite pluton.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号