首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1728篇
  免费   10篇
  国内免费   132篇
测绘学   62篇
大气科学   95篇
地球物理   418篇
地质学   1010篇
海洋学   126篇
天文学   38篇
自然地理   121篇
  2024年   25篇
  2023年   67篇
  2022年   47篇
  2021年   68篇
  2020年   161篇
  2019年   89篇
  2018年   120篇
  2017年   178篇
  2016年   111篇
  2015年   132篇
  2014年   229篇
  2013年   354篇
  2012年   214篇
  2011年   3篇
  2010年   4篇
  2009年   4篇
  2008年   4篇
  2007年   3篇
  2006年   7篇
  2005年   11篇
  2004年   11篇
  2003年   7篇
  2002年   17篇
  2001年   1篇
  2000年   1篇
  1993年   2篇
排序方式: 共有1870条查询结果,搜索用时 0 毫秒
81.
Triassic granodiorites in South China (SC) provide an opportunity to examine crust–mantle interactions that may have been caused by a mantle plume. Here we present a combined study of chronological, geochemical, and Sr–Nd–Hf isotopic compositions for Dashenshan granodiorites. These are high-K, calc-alkaline, I-type granodiorites that yield a U–Pb zircon age of 211 ± 3 Ma. They are metaluminous to weakly peraluminous (A/CNK < 1.1), with 3.04–3.89 wt.% Na2O and 3.24–3.86 wt.% K2O, and Na2O/K2O ratio ranging from 0.79 to 1.11. These granodiorites contain 67.7–72.6 wt.% SiO2 but show moderate Mg# values (44.2–57.8) and variable contents of Ni (3.6–29.9 ppm) and Cr (7.6–53.5 ppm). They exhibit light rare earth element (REE) enrichment and flat, heavy REE patterns with negative Eu anomalies (Eu/Eu* = 0.52–0.87). They also display strongly negative Ba, Sr, Nb, Ta, P, and Ti anomalies and positive Rb, Th, K, and Pb anomalies. Dashenshan granodiorites have high whole-rock initial 87Sr/86Sr ratios (0.7121–0.7172), negative εNd (t) values (–8.8 to –6.8), and negative zircon εHf (t) values (–6.6 to –3.3). These results suggest that the Dashenshan granodiorites were generated by a mixing between crustal melt and mantle-derived magma in an extensional setting. We conclude that generation of the Dashenshan pluton may reflect an interaction between a mantle plume and the overlying SC crust.  相似文献   
82.
The Agnew–Wiluna greenstone belt in the Yilgarn Craton of Western Australia is the most nickel-sulfide-endowed komatiite belt in the world. The Agnew–Wiluna greenstone belt contains two mineralised units/horizons that display very different volcanological and geochemical features. The Mt Keith unit comprises >500 m-thick spinifex-free adcumulate-textured lenses, which are flanked by laterally extensive orthocumulate-textured units. Spinifex texture is absent from this unit. Disseminated nickel sulfides, interstitial to former olivine crystals, are concentrated in the lensoidal areas. Massive sulfides are locally present along the base or margins of the lenses or channels. The Cliffs unit is locally >150 m thick and comprises a sequence of differentiated spinifex-textured flow units. The basal unit is the thickest, and contains basal massive nickel-sulfide mineralisation. The Mt Keith and Cliffs units display important common features: (i) MgO contents of 25–30% in inferred parental magmas; and (ii) Al/Ti ratios of ~20 (Munro-type). However, the Mt Keith unit is highly crustally contaminated (e.g. LREE-enriched, high HFSEs), whereas the Cliffs unit does not display evidence of significant crustal assimilation. We argue that the distinct trace-element concentrations and profiles of the two komatiite units reflect their different emplacement style and country rocks: the Mt Keith unit is interpreted to have been emplaced as an intrusive sill into dacitic volcanic units whereas the Cliffs unit was extruded as lava flow onto tholeiitic basalts in a subaqueous environment. The mode of emplacement and nature of country rock is the single biggest factor in controlling mineralisation styles in komatiites. On the other hand, evidence of crustal contamination does not necessarily provide information of the prospectivity of komatiites to host Ni–Cu–(PGE) mineralisation, despite being a good proxy for the style of komatiite emplacement and the nature of country rocks.  相似文献   
83.
Polymetallic vein-type Zn-Pb deposits are located in the Xiangxi–Qiandong zinc-lead metallogenic belt (XQMB) of the northwestern margin of the Jiangnan Orogen, South China. Ores are mainly found in fault-bounded quartz veins hosted in the upper part of the Banxi Group that consists of low-grade metamorphic sandstone, siltstone with minor tuff interbeds. The Zn-Pb deposits primarily contain sphalerite, galena, chalcopyrite and pyrite, accompanied by quartz and minor calcite. Zinc, lead, copper, indium and gallium are enriched in these ores. Investigation of the ore fluid reveals low temperature (87–262 °C) with scattered salinity (range from 2.73 to 26.64 wt% NaCleqv.). Hydrogen and oxygen isotopic compositions of fluid inclusions in quartz indicate mixing of magmatic hydrothermal fluid and meteoric water (δ18OH2O SMOW = 0.2‰ to 4.2‰; δDH2O SMOW = −126‰ to −80‰). Carbon and oxygen isotopic composition of carbonate samples indicate the magmatic hydrothermal origin of CO32− or CO2 in ore-forming fluid (δ13CPDB = −6.9‰ to −5.7‰, δ18OSMOW = 11.3‰ to 12.7‰). Sulfur and lead isotopic compositions (δ34SVCDT = 8.8–14.2‰ and 206Pb/204Pb = 17.156–17.209, 207Pb/204Pb = 15.532–15.508, 208Pb/204Pb = 37.282–37.546) demonstrate that sulfur sources were relatively uniform, and low radiogenic lead isotopic compositions indicate that ore metals were derived from a relatively unradiogenic source, probably by mixing of mantle with crust. Therefore, polymetallic vein-type Zn-Pb mineralization in this area probably arose from a magmatic-related hydrothermal system, and the deposition of sulfides occurred in response to cooling and boiling of magmatic hydrothermal fluids (high salinity, high δ18OH2O and δDH2O and metal-bearing), and is mainly the result of emplacement into open space and mixing with meteoric water (low salinity, low δ18OH2O and δDH2O). This study provides direct evidence that magmatism was involved in the ore-forming processes of the low temperature metallogenic district, South China, and it raises awareness about the presence of polymetallic vein-type Zn-Pb deposits in the northwest margin of Jiangnan Orogen and their potential as a source of zinc, copper, indium and gallium.  相似文献   
84.
Various tectonic models have been proposed to account for the widely distributed igneous activities in the southeastern part of the South China Block (SCB) during the Triassic–Jurassic period. One of the major contending debates is on the timing of initiation of the palaeo-Pacific plate subduction under the SCB, due to lack of unequivocal evidence for arc magmatism during the period in this region.

The 191 ± 10 Ma (N = 5, MSWD = 12) calc-alkalic high-K I-type Talun metagranite occurs in the southern Tailuko belt of the Tananao metamorphic complex, Taiwan. In terms of age, this metagranite belongs to the Early Yanshanian igneous activity in the southeastern part of the SCB. However, its geographic position does not accord with the well-known general oceanward younging trend of the Yansnanian igneous rocks. In view of the large age uncertainty reported, this metagranite is redated in this study. Some zircons of this metagranite are high in U content and are metamict. Zircons with low U contents are analysed by SHRIMP yielding a more precise age of 200 ± 2 Ma (N = 10, MSWD = 4). In particular, the εHf(t) of these dated zircons ranges from +4.5 to +12.9. The metagranite mainly consists of quartz, K-feldspar, plagioclase, with minor amounts of garnet, biotite, zircon, apatite, and pyrrhotite. Chlorite and calcite are secondary phases overprinted by the later tectonic event(s). Its initial Sr isotope compositional range is 0.70473–0.70588, and εNd(t), +2.4 to +3.6. The results demonstrate that the genesis of this metagranite could be attributed to the assimilation-fractionation of a depleted mantle-derived basaltic magma, which was most likely related to arc magmatism. The present study therefore offers key evidence that during the Mesozoic, the palaeo-Pacific plate subduction underneath the SCB would have taken place no later than the very early Jurassic.  相似文献   

85.
Magnetite is a common mineral in many ore deposits and their host rocks, and contains a wide range of trace elements (e.g., Ti, V, Mg, Cr, Mn, Ca, Al, Ni, Ga, Sn) that can be used for deposit type fingerprinting. In this study, we present new magnetite geochemical data for the Longqiao Fe deposit (Luzong ore district) and Tieshan Fe–(Cu) deposit (Edong ore district), which are important magmatic-hydrothermal deposits in eastern China.Textural features, mineral assemblages and paragenesis of the Longqiao and Tieshan ore samples have suggested the presence of two main mineralization periods (sedimentary and hydrothermal) at Longqiao, among which the hydrothermal period comprises four stages (skarn, magnetite, sulfide and carbonate); whilst the Tieshan Fe–(Cu) deposit comprises four mineralization stages (skarn, magnetite, quartz-sulfide and carbonate).Magnetite from the Longqiao and Tieshan deposits has different geochemistry, and can be clearly discriminated by the Sn vs. Ga, Ni vs. Cr, Ga vs. Al, Ni vs. Al, V vs. Ti, and Al vs. Mg diagrams. Such difference may be applied to distinguish other typical skarn (Tieshan) and multi-origin hydrothermal (Longqiao) deposits in the MLYRB. The fluid–rock interactions, influence of the co-crystallizing minerals and other physicochemical parameters, such as temperature and fO2, may have altogether controlled the magnetite trace element contents of both deposits. The Tieshan deposit may have had higher degree of fO2, but lower fluid–rock interactions and ore-forming temperature than the Longqiao deposit. The TiO2–Al2O3–(MgO + MnO) and (Ca + Al + Mn) vs. (Ti + V) magnetite discrimination diagrams show that the Longqiao Fe deposit has both sedimentary and hydrothermal features, whereas the Tieshan Fe–(Cu) deposit is skarn-type and was likely formed via hydrothermal metasomatism, consistent with the ore characteristics observed.  相似文献   
86.
This study presents a new and first finding of Au-Pb intermetallic compounds in the Inagli Pt–Au placer deposit, the Republic of Sakha (Yakutia), Russia. This is the first time that all three accepted minerals (hunchunite, anyuiite and novodneprite), as well as unnamed Au-Pb intermetallics, corresponding in composition to Au1.5Pb and AuPb, are present together in the same locality. We provide chemical compositions of Au-Pb compounds and host gold particles, describe morphology and relationships between different mineral phases. We also present an unexpected finding of unusual inclusion of Pb-Fe-aluminosilicate associated with K-feldspar and anyuiite in the gold grain. The new data together with data from other occurrences of Au-Pb compounds worldwide were reviewed to discuss type localities, mineralogy, conditions and possible mechanisms of formation of Au-Pb intermetallics and to provide an overview of current knowledge about these uniquely rare but naturally occurring minerals.  相似文献   
87.
The aim of this study was to investigate the accumulation of arsenic (As) in and on roots of Zea mays (maize) and Helianthus annuus (sunflower) by means of synchrotron-based micro-focused X-ray fluorescence imaging (μ-XRF). Plant and soil samples were collected from two field sites in the Hetao Plain (Inner Mongolia, China) which have been regularly irrigated with As-rich groundwater. Detailed μ-XRF element distribution maps were generated at the Fluo-beamline of the Anka synchrotron facility (Karlsruhe Institute of Technology) to assess the spatial distribution of As in thin sections of plant roots and soil particles. The results showed that average As concentrations in the roots (14.5–27.4 mg kg−1) covered a similar range as in the surrounding soil, but local maximum root As concentrations reached up to 424 mg kg−1 (H. annuus) and 1280 mg kg−1 (Z. mays), respectively. Importantly, the results revealed that As had mainly accumulated at the outer rhizodermis along with iron (Fe). We therefore conclude that thin crusts of Fe-(hydr)oxides cover the roots and act as an effective barrier to As, similar to the formation of Fe plaque in rice roots. In contrast to permanently flooded rice paddy fields, regular flood irrigation results in variable redox conditions within the silty and loamy soils at our study site and fosters the formation of Fe-(hydr)oxide plaque on the root surfaces.  相似文献   
88.
《International Geology Review》2012,54(15):1801-1828
We have investigated Mesozoic geological problems around the South China Sea (SCS) based on gravimetric, magnetic, seismic, and lithofacies data. Three-dimensional analytical signal amplitudes (ASA) of magnetic anomalies clearly define the inland tectonic boundaries and the residual Mesozoic basins offshore. The ASA suggest that the degree of magmatism and/or the average magnetic susceptibility of igneous rocks increase southeastwards and that late-stage A-type igneous rocks present along the coast of southeast China possess the highest effective susceptibility. The geophysical data define Mesozoic sedimentary and tectonic structures and reveal four major unconformities [Pz/T–J, T–J/J, J/K, and Mesozoic/Cenozoic (Pz, Palaeozic; T, Triassic; J, Jurassic; K, Cretaceous)], corresponding to regional tectonic events revealed by nine palaeogeographic time slices based on prior geological surveys and our new fieldwork. Showing both sedimentary and volcanic facies and regional faults, our palaeogeographic maps confirm an early Mesozoic northwestward-migrating orogeny that gradually obliterated the Tethyan regime, and a middle-to-late Mesozoic southeastward migration and younging in synchronized extension, faulting, and magmatism. Three major phases of marine deposition developed but were subsequently terminated by tectonic compression, uplift, erosion, faulting, rifting, and/or magmatism. The tectonic transition from the Tethyan to Pacific regimes was completed by the end of the Middle Triassic (ca. 220 Ma), reflecting widespread Mesozoic orogeny. The transition from an active to a passive continental margin occurred at the end of the Early Cretaceous (ca. 100 Ma); this was accompanied by significant changes in sedimentary environments, due likely to an eastward retreat of the palaeo-Pacific subduction zone and/or to the collision of the West Philippine block with Eurasia. The overall Mesozoic evolution of southeast China comprised almost an entire cycle of orogenic build-up, peneplanation, and later extension, all under the influence of the subducting palaeo-Pacific plate. Continental margin extension and rifting continued into the early Cenozoic, eventually triggering the Oligocene opening of the SCS.  相似文献   
89.
《International Geology Review》2012,54(12):1506-1522
Garnet orthopyroxenites from Maowu (Dabieshan orogen, eastern China) were formed from a refractory harzburgite/dunite protolith. They preserve mineralogical and geochemical evidence of hydration/metasomatism and dehydration at the lower edge of a cold mantle wedge. Abundant polyphase inclusions in the cores of garnet porphyroblasts record the earliest metamorphism and metasomatism in garnet orthopyroxenites. They are mainly composed of pargasitic amphibole, gedrite, chlorite, talc, phlogopite, and Cl-apatite, with minor anhydrous minerals such as orthopyroxene, sapphirine, spinel, and rutile. Most of these phases have high XMg, NiO, and Ni/Mg values, implying that they probably inherited the chemistry of pre-existing olivine. Trace element analyses indicate that polyphase inclusions are enriched in large ion lithophile elements (LILE), light rare earth elements (LREE), and high field strength elements (HFSE), with spikes of Ba, Pb, U, and high U/Th. Based on the P–T conditions of formation for the polyphase inclusions (?1.4 GPa, 720–850°C), we suggest that the protolith likely underwent significant hydration/metasomatism by slab-derived fluid under shallow–wet–cold mantle wedge corner conditions beneath the forearc. When the hydrated rocks were subducted into a deep–cold mantle wedge zone and underwent high-pressure–ultrahigh-pressure (HP–UHP) metamorphism, amphibole, talc, and chlorite dehydrated and garnet, orthopyroxene, Ti-chondrodite, and Ti-clinohumite formed during prograde metamorphism. The majority of LILE (e.g. Ba, U, Pb, Sr, and Th) and LREE were released into the fluid formed by dehydration reactions, whereas HFSE (e.g. Ti, Nb, and Ta) remained in the cold mantle wedge lower margin. Such fluid resembling the trace element characteristics of arc magmas evidently migrates into the overlying, internal, hotter part of the mantle wedge, thus resulting in a high degree of partial melting and the formation of arc magmas.  相似文献   
90.
The Glikson structure is an aeromagnetic and structural anomaly located in the Little Sandy Desert of Western Australia (23°59'S, 121°34′E). Shatter cones and planar microstructures in quartz grains are present in a highly deformed central region, suggesting an impact origin. Circumferential shortening folds and chaotically disposed bedding define a 19 km-diameter area of deformation. Glikson is located in the northwestern Officer Basin in otherwise nearly flat-lying sandstone, siltstone and conglomerate of the Neoproterozoic Mundadjini Formation, intruded by dolerite sills. The structure would not have been detected if not for its strong ring-shaped aeromagnetic anomaly, which has a 10 km inner diameter and a 14 km outer diameter. We interpret the circular magnetic signature as the product of truncation and folding of mafic sills into a ring syncline. The sills most likely correlate with dolerites that intrude the Boondawari Formation ~25 km to the north, for which we report a SHRIMP U?–?Pb baddeleyite and zircon age of 508?±?5 Ma, providing a precise older limit for the impact event that formed the Glikson structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号