首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3629篇
  免费   979篇
  国内免费   1859篇
测绘学   22篇
大气科学   78篇
地球物理   714篇
地质学   5103篇
海洋学   65篇
天文学   97篇
综合类   210篇
自然地理   178篇
  2024年   27篇
  2023年   73篇
  2022年   156篇
  2021年   149篇
  2020年   181篇
  2019年   217篇
  2018年   195篇
  2017年   207篇
  2016年   232篇
  2015年   249篇
  2014年   237篇
  2013年   247篇
  2012年   307篇
  2011年   266篇
  2010年   240篇
  2009年   301篇
  2008年   206篇
  2007年   282篇
  2006年   275篇
  2005年   229篇
  2004年   248篇
  2003年   232篇
  2002年   194篇
  2001年   178篇
  2000年   194篇
  1999年   204篇
  1998年   168篇
  1997年   135篇
  1996年   114篇
  1995年   122篇
  1994年   101篇
  1993年   98篇
  1992年   64篇
  1991年   28篇
  1990年   35篇
  1989年   19篇
  1988年   19篇
  1987年   13篇
  1986年   6篇
  1985年   6篇
  1984年   4篇
  1983年   1篇
  1979年   5篇
  1954年   3篇
排序方式: 共有6467条查询结果,搜索用时 15 毫秒
141.
From water to tillage erosion dominated landform evolution   总被引:3,自引:1,他引:3  
While water and wind erosion are still considered to be the dominant soil erosion processes on agricultural land, there is growing recognition that tillage erosion plays an important role in the redistribution of soil on agricultural land. In this study, we examined soil redistribution rates and patterns for an agricultural field in the Belgian loess belt. 137Cs derived soil erosion rates have been confronted with historical patterns of soil erosion based on soil profile truncation. This allowed an assessment of historical and contemporary landform evolution on agricultural land and its interpretation in relation to the dominant geomorphic process. The results clearly show that an important shift in the relative contribution of tillage and water erosion to total soil redistribution on agricultural land has occurred during recent decades. Historical soil redistribution is dominated by high losses on steep midslope positions and concavities as a result of water erosion, leading to landscape incision and steepening of the topography. In contrast, contemporary soil redistribution is dominated by high losses on convex upperslopes and infilling of slope and valley concavities as a result of tillage, resulting in topographic flattening. This shift must be attributed to the increased mechanization of agriculture during recent decades. This study shows that the typical topographical dependency of soil redistribution processes and their spatial interactions must be accounted for when assessing landform and soil profile evolution.  相似文献   
142.
燕山造山带具有极其复杂的地质结构构造,其复杂性在现有公开出版的地质图件中未能有效地反映出来。从事地学研究的科研人员,以公开出版的地质图件为基础所衍生的相关分析图件和由此作出的结论与野外实际地质情况往往相去甚远。本文作者近年来所做基础地质调查成果显示,基础地质调查成果的缺陷成为制约国家地学科研发展的严重障碍。影响基础地质调查成果质量提高的原因很多,但较为重要的是国家对基础地学科研资金的政策性投入存在问题。  相似文献   
143.
A mountainous terrain, the eastern Pontide tectonic belt, located in northeastern Turkey, contains more than 60 known volcanogenic massive sulfide (VMS) deposits that differ in reserves (0.1–30 million tonnes) and grades. Soil geochemistry is conventionally used in exploration programs to discover concealed VMS deposits in the region. In the present study, Pb and As element pair were used as pathfinder elements to investigate the relationship of their anomalies to a completely delineated ore deposit (Killik VMS deposit) in an orientation survey that served as a natural physical model. Two hundred forty soil samples were analyzed in the present study. The two elements, which represent the opposite ends of the mobility range, revealed high contrast and overlapped each other at the location of the ore deposit due to enhancement of the anomalies by hydromorphic dispersion, which is an indication that soil samples would produce reliable results. The successful delineation of the deposit is remarkable considering the rough topography and the climatic limitations. Previously the extremely moist and temperate climate was thought to cause excessive leaching of the trace element pathfinders from the ore deposits to produce extensive anomalies usually extending away from the mineralization thus, leading to erroneous results and/or extensive anomalous areas. But the present research has shown that the method can be used effectively if the sampling and data evaluation is carefully conducted.  相似文献   
144.
Marine transgression onto the South American continent took place at least twice in the Miocene along distinct paleogeographic corridors. The first event occurred between 15 and 13 Ma and the second between 10 and 5? Ma. Each event has particular dominant variables (tectonism, eustacy, sediment accumulation rate) that permitted the preservation of the record and development of the sea on the continent. The 15–13 Ma transgression was tectonically and eustatically controlled, flooding older sedimentary accommodation zones on the South American plate during a global high sea level, whereas the 105? Ma event was predominantly tectonically controlled, generated by tectonic loading created in the Cordillera Oriental fold-and-thrust belt. A new 7.72±0.31 Ma 40Ar/39Ar date from the Río Parapetí in Bolivia suggests that the 15–13 Ma transgression registered in Argentina produced no continental connection to the Caribbean transgression, registered in Bolivia, because of temporal constraints.  相似文献   
145.
A metamorphic petrological study, in conjunction with recent precise geochronometric data, revealed a complex PTt path for high-grade gneisses in a hitherto poorly understood sector of the Mesoproterozoic Maud Belt in East Antarctica. The Maud Belt is an extensive high-grade, polydeformed, metamorphic belt, which records two significant tectono-thermal episodes, once towards the end of the Mesoproterozoic and again towards the late Neoproterozoic/Cambrian. In contrast to previous models, most of the metamorphic mineral assemblages are related to a Pan-African tectono-thermal overprint, with only very few relics of late Mesoproterozoic granulite-facies mineral assemblages (M1) left in strain-protected domains. Petrological and mineral chemical evidence indicates a clockwise PTt path for the Pan-African orogeny. Peak metamorphic (M2b) conditions recorded by most rocks in the area (T = 709–785 °C and P = 7.0–9.5 kbar) during the Pan-African orogeny were attained subsequent to decompression from probably eclogite-facies metamorphic conditions (M2a).The new data acquired in this study, together with recent geochronological and geochemical data, permit the development of a geodynamic model for the Maud Belt that involves volcanic arc formation during the late Mesoproterozoic followed by extension at 1100 Ma and subsequent high-grade tectono-thermal reworking once during continent–continent collision at the end of the Mesoproterozoic (M1; 1090–1030 Ma) and again during the Pan-African orogeny (M2a, M2b) between 565 and 530 Ma. Post-peak metamorphic K-metasomatism under amphibolite-facies conditions (M2c) followed and is ascribed to post-orogenic bimodal magmatism between 500 and 480 Ma.  相似文献   
146.
In this paper, cataclastic shear zones along the northern margin of the Mino Belt, central Japan are described, and the significance of the shearing in the tectonic evolution of SW Japan is examined. The Mino Belt in SW Japan is composed of accretionary complexes of Jurassic to Early Cretaceous age. Field investigation revealed that remarkable cataclastic shear zones trending east to northeast run along the northern margin of the Mino Belt. Closely spaced cleavage is developed in these shear zones. Lineation on the cleavage plunges at shallow to moderate angles. Deformation structures (e.g. composite planar fabric and asymmetric structure of clasts) in the sheared rocks clearly indicate a sinistral sense of shear. The shearing ceased by latest Cretaceous time, because the sheared rocks are overlain by unsheared Upper Cretaceous volcanic rocks. The sinistral shearing may be closely related to Cretaceous sinistral movement along the eastern margin of Asia. Sinistral shearing along the northern margin of the Mino Belt can be considered as a key for re-examining the tectonic development of SW Japan.  相似文献   
147.
Composite granite–quartz veins occur in retrogressed ultrahigh pressure (UHP) eclogite enclosed in gneiss at General's Hill in the central Sulu belt, eastern China. The granite in the veins has a high‐pressure (HP) mineral assemblage of dominantly quartz+phengite+allanite/epidote+garnet that yields pressures of 2.5–2.1 GPa (Si‐in‐phengite barometry) and temperatures of 850–780°C (Ti‐in‐zircon thermometry) at 2.5 GPa (~20°C lower at 2.1 GPa). Zircon overgrowths on inherited cores and new grains of zircon from both components of the composite veins crystallized at c. 221 Ma. This age overlaps the timing of HP retrograde recrystallization dated at 225–215 Ma from multiple localities in the Sulu belt, consistent with the HP conditions retrieved from the granite. The εHf(t) values of new zircon from both components of the composite veins and the Sr–Nd isotope compositions of the granite consistently lie between values for gneiss and eclogite, whereas δ18O values of new zircon are similar in the veins and the crustal rocks. These data are consistent with zircon growth from a blended fluid generated internally within the gneiss and the eclogite, without any ingress of fluid from an external source. However, at the peak metamorphic pressure, which could have reached 7 GPa, the rocks were likely fluid absent. During initial exhumation under UHP conditions, exsolution of H2O from nominally anhydrous minerals generated a grain boundary supercritical fluid in both gneiss and eclogite. As exhumation progressed, the volume of fluid increased allowing it to migrate by diffusing porous flow from grain boundaries into channels and drain from the dominant gneiss through the subordinate eclogite. This produced a blended fluid intermediate in its isotope composition between the two end‐members, as recorded by the composite veins. During exhumation from UHP (coesite) eclogite to HP (quartz) eclogite facies conditions, the supercritical fluid evolved by dissolution of the silicate mineral matrix, becoming increasingly solute‐rich, more ‘granitic’ and more viscous until it became trapped. As crystallization began by diffusive loss of H2O to the host eclogite concomitant with ongoing exhumation of the crust, the trapped supercritical fluid intersected the solvus for the granite–H2O system, allowing phase separation and formation of the composite granite–quartz veins. Subsequently, during the transition from HP eclogite to amphibolite facies conditions, minor phengite breakdown melting is recorded in both the granite and the gneiss by K‐feldspar+plagioclase+biotite aggregates located around phengite and by K‐feldspar veinlets along grain boundaries. Phase equilibria modelling of the granite indicates that this late‐stage melting records P–T conditions towards the end of the exhumation, with the subsolidus assemblage yielding 0.7–1.1 GPa at <670°C. Thus, the composite granite–quartz veins represent a rare example of a natural system recording how the fluid phase evolved during exhumation of continental crust. The successive availability of different fluid phases attending retrograde metamorphism from UHP eclogite to amphibolite facies conditions will affect the transport of trace elements through the continental crust and the role of these fluids as metasomatic agents interacting with the mantle wedge in the subduction channel.  相似文献   
148.
正20141283 Bai Daoyuan(Hunan Institute of Geological Survey,Changsha 410016,China);Zhong Xiang Nature,Origin and Tectonic Setting of Jinzhou Basin in the South Segment of Xuefeng Orogen(Geology in China,ISSN1000-3657,CN11-1167/P,40(4),2013,p.1079-1091,10 illus.,47 refs.)Key words:foreland basins,strike-slip faults,Hunan Province  相似文献   
149.
Structural, petrological and textural studies are combined with phase equilibria modelling of metapelites from different structural levels of the Roc de Frausa Massif in the Eastern Pyrenees. The pre‐Variscan lithological succession is divided into the Upper, Intermediate and Lower series by two orthogneiss sheets and intruded by Variscan igneous rocks. Structural analysis reveals two phases of Variscan deformation. D1 is marked by tight to isoclinal small‐scale folds and an associated flat‐lying foliation (S1) that affects the whole crustal section. D2 structures are characterized by tight upright folds facing to the NW with steep NE–SW axial planes. D2 heterogeneously reworks the D1 fabrics, leading to an almost complete transposition into a sub‐vertical foliation (S2) in the high‐grade metamorphic domain. All structures are affected by late open to tight, steeply inclined south‐verging NW–SE folds (F3) compatible with steep greenschist facies dextral shear zones of probable Alpine age. In the micaschists of the Upper series, andalusite and sillimanite grew during the formation of the S1 foliation indicating heating from 580 to 640 °C associated with an increase in pressure. Subsequent static growth of cordierite points to post‐D1 decompression. In the Intermediate series, a sillimanite–biotite–muscovite‐bearing assemblage that is parallel to the S1 fabric is statically overgrown by cordierite and K‐feldspar. This sequence points to ~1 kbar of post‐D1 decompression at 630–650 °C. The Intermediate series is intruded by a gabbro–diorite stock that has an aureole marked by widespread migmatization. In the aureole, the migmatitic S1 foliation is defined by the assemblage biotite–sillimanite–K‐feldspar–garnet. The microstructural relationships and garnet zoning are compatible with the D1 pressure peak at ~7.5 kbar and ~750 °C. Late‐ to post‐S2 cordierite growth implies that F2 folds and the associated S2 axial planar leucosomes developed during nearly isothermal decompression to <5 kbar. The Lower series migmatites form a composite S1–S2 fabric; the garnet‐bearing assemblage suggests peak P–T conditions of >5 kbar at suprasolidus conditions. Almost complete consumption of garnet and late cordierite growth points to post‐D2 equilibration at <4 kbar and <750 °C. The early metamorphic history associated with the S1 fabric is interpreted as a result of horizontal middle crustal flow associated with progressive heating and possible burial. The upright F2 folding and S2 foliation are associated with a pressure decrease coeval with the intrusion of mafic magma at mid‐crustal levels. The D2 tectono‐metamorphic evolution may be explained by a crustal‐scale doming associated with emplacement of mafic magmas into the core of the dome.  相似文献   
150.
Controversy over the plate tectonic affinity and evolution of the Saxon granulites in a two‐ or multi‐plate setting during inter‐ or intracontinental collision makes the Saxon Granulite Massif a key area for the understanding of the Palaeozoic Variscan orogeny. The massif is a large dome structure in which tectonic slivers of metapelite and metaophiolite units occur along a shear zone separating a diapir‐like body of high‐P granulite below from low‐P metasedimentary rocks above. Each of the upper structural units records a different metamorphic evolution until its assembly with the exhuming granulite body. New age and petrologic data suggest that the metaophiolites developed from early Cambrian protoliths during high‐P amphibolite facies metamorphism in the mid‐ to late‐Devonian and thermal overprinting by the exhuming hot granulite body in the early Carboniferous. A correlation of new Ar–Ar biotite ages with published PTt data for the granulites implies that exhumation and cooling of the granulite body occurred at average rates of ~8 mm/year and ~80°C/Ma, with a drop in exhumation rate from ~20 to ~2.5 mm/year and a slight rise in cooling rate between early and late stages of exhumation. A time lag of c. 2 Ma between cooling through the closure temperatures for argon diffusion in hornblende and biotite indicates a cooling rate of 90°C/Ma when all units had assembled into the massif. A two‐plate model of the Variscan orogeny in which the above evolution is related to a short‐lived intra‐Gondwana subduction zone conflicts with the oceanic affinity of the metaophiolites and the timescale of c. 50 Ma for the metamorphism. Alternative models focusing on the internal Variscan belt assume distinctly different material paths through the lower or upper crust for strikingly similar granulite massifs. An earlier proposed model of bilateral subduction below the internal Variscan belt may solve this problem.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号