首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19537篇
  免费   4128篇
  国内免费   6591篇
测绘学   533篇
大气科学   3731篇
地球物理   3565篇
地质学   12067篇
海洋学   3537篇
天文学   106篇
综合类   1953篇
自然地理   4764篇
  2024年   86篇
  2023年   277篇
  2022年   798篇
  2021年   805篇
  2020年   847篇
  2019年   1067篇
  2018年   899篇
  2017年   904篇
  2016年   962篇
  2015年   1018篇
  2014年   1357篇
  2013年   1229篇
  2012年   1437篇
  2011年   1445篇
  2010年   1177篇
  2009年   1350篇
  2008年   1272篇
  2007年   1396篇
  2006年   1424篇
  2005年   1252篇
  2004年   1178篇
  2003年   1041篇
  2002年   929篇
  2001年   839篇
  2000年   779篇
  1999年   759篇
  1998年   603篇
  1997年   563篇
  1996年   497篇
  1995年   409篇
  1994年   374篇
  1993年   312篇
  1992年   248篇
  1991年   188篇
  1990年   128篇
  1989年   119篇
  1988年   96篇
  1987年   63篇
  1986年   34篇
  1985年   27篇
  1984年   8篇
  1983年   3篇
  1982年   5篇
  1981年   6篇
  1980年   9篇
  1979年   8篇
  1978年   11篇
  1977年   13篇
  1976年   1篇
  1954年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
北京下苇甸剖面张夏组鲕粒特征及其白云化机制   总被引:1,自引:0,他引:1  
北京下苇甸剖面张夏组作为华北寒武系的标准剖面之一,鲜有人对其中的鲕粒类型及其成岩作用进行细致研究。在充分调研前人研究的基础上,通过野外观察、实测,并结合室内薄片鉴定、XRD测试等技术,对下苇甸剖面张夏组的鲕粒类型进行总结,并对鲕粒白云化机制进行分析。结果显示:(1)下苇甸张夏组鲕粒类型主要为放射鲕、同心放射鲕及单晶鲕/多晶鲕,还有少量同心鲕、复鲕及藻鲕;(2)鲕粒发生白云化,填隙物未见白云化,且放射圈层白云化程度高于同心圈层,并且放射圈层白云石颗粒围绕核心呈放射状分布,同心圈层围绕核心呈同心状分布;(3)鲕粒内部白云石颗粒多为中细晶,自形-半自形,回流渗透白云化是造成鲕粒白云化的主要成因,因此造成亮晶鲕粒石灰岩白云化程度高于灰泥鲕粒石灰岩。  相似文献   
992.
渝东北巫山地区是重要的页岩气勘探远景区,勘探程度较低。本次研究以岩石物理和测井数据为基础,以广域电磁法为手段,开展该区的页岩气有利区评价。通过对地表样品及井孔电阻率测井资料的分析,揭示研究区目的层富有机质页岩层电阻率表现为明显低阻特征,与上覆下伏地层电性差异明显,表明本区分布的上奥陶统五峰—下志留统龙马溪组富有机质页岩具备开展电法勘探工作的物性条件。在对电磁资料处理解释的基础上,查明了重庆巫山地区"隆凹相间"的构造格局,断裂性质主要为逆断层;目的层上奥陶统五峰组—下志留统龙马溪组富有机质泥页岩连续稳定分布,低阻特征明显,埋深范围在800~4 800 m之间。综合考虑目的层页岩电阻率、极化率、埋深等因素,预测出页岩气有利区3个,区内富有机质页岩发育,页岩气勘探前景较好。  相似文献   
993.
This work restored the erosion thickness of the top surface of each Cretaceous formations penetrated by the typical well in the Hari sag, and simulated the subsidence burial history of this well with software BasinMod. It is firstly pointed out that the tectonic subsidence evolution of the Hari sag since the Cretaceous can be divided into four phases: initial subsidence phase, rapid subsidence phase,uplift and erosion phase, and stable slow subsidence phase. A detailed reconstruction of the tectonothermal evolution and hydrocarbon generation histories of typical well was undertaken using the EASY R_0% model, which is constrained by vitrinite reflectance(R_0) and homogenization temperatures of fluid inclusions. In the rapid subsidence phase, the peak period of hydrocarbon generation was reached at c.a.105.59 Ma with the increasing thermal evolution degree. A concomitant rapid increase in paleotemperatures occurred and reached a maximum geothermal gradient of about 43-45℃/km. The main hydrocarbon generation period ensued around 105.59-80.00 Ma and the greatest buried depth of the Hari sag was reached at c.a. 80.00 Ma, when the maximum paleo-temperature was over 180℃.Subsequently, the sag entered an uplift and erosion phase followed by a stable slow subsidence phase during which the temperature gradient, thermal evolution, and hydrocarbon generation decreased gradually. The hydrocarbon accumulation period was discussed based on homogenization temperatures of inclusions and it is believed that two periods of rapid hydrocarbon accumulation events occurred during the Cretaceous rapid subsidence phase. The first accumulation period observed in the Bayingebi Formation(K_1 b) occurred primarily around 105.59-103.50 Ma with temperatures of 125-150℃. The second accumulation period observed in the Suhongtu Formation(K_1 s) occurred primarily around84.00-80.00 Ma with temperatures of 120-130℃. The second is the major accumulation period, and the accumulation mainly occurred in the Late Cretaceous. The hydrocarbon accumulation process was comprehensively controlled by tectono-thermal evolution and hydrocarbon generation history. During the rapid subsidence phase, the paleo temperature and geothermal gradient increased rapidly and resulted in increasing thermal evolution extending into the peak period of hydrocarbon generation,which is the key reason for hydrocarbon filling and accumulation.  相似文献   
994.
The Sidingheishan mafic-ultramafic intrusion is located in the eastern part of the Northern Tianshan Mountain, along the southern margin of the Central Asian Orogenic Belt in northern Xinjiang autonomous region of China. The Sidingheishan intrusion is mainly composed of wehrlite, olivine websterite, olivine gabbro, gabbro and hornblende gabbro. At least two pulses of magma were involved in the formation of the intrusion. The first pulse of magma produced an olivine-free unit and the second pulse produced an olivine-bearing unit. The magmas intruded the Devonian granites and granodiorites.An age of 351.4±5.8 Ma(Early Carboniferous) for the Sidingheishan intrusion has been determined by U-Pb SHRIMP analysis of zircon grains separated from the olivine gabbro unit. A U-Pb age of 359.2±6.4 Ma from the gabbro unit has been obtained by LA-ICP-MS. Olivine of the Sidingheishan intrusion reaches 82.52 mole% Fo and 1414 ppm Ni. On the basis of olivine-liquid equilibria, it has been calculated that the MgO and FeO included in the parental magma of a wehrlite sample were approximately10.43 wt% and 13.14 wt%, respectively. The Sidingheishan intrusive rocks are characterized by moderate enrichments in Th and Sm, slight enrichments in light REE, and depletions in Nb, Ta, Zr and Hf. The ε_(Nd)(t) values in the rock units vary from +6.70 to +9.64, and initial ~(87)Sr/~(86)Sr ratios range between 0.7035 and0.7042. Initial ~(206)Pb/~(204)Pb, ~(207)Pb/~(204)Pb and ~(208)Pb/~(204)Pb values fall in the ranges of 17.23-17.91,15.45-15.54 and 37.54-38.09 respectively. These characteristics are collectively similar to the Heishan intrusion and the Early Carboniferous subduction related volcanic rocks in the Santanghu Basin, North Tianshan and Beishan area. The low(La/Gd)_(PM) values between 0.26 and 1.77 indicate that the magma of the Sidingheishan intrusion was most likely derived from a depleted spinel-peridotite mantle.(Th/Nb)_(PM)ratios from 0.59 to 20.25 indicate contamination of the parental magma in the upper crust.Crystallization modeling methods suggest that the parental magma of the Sidingheishan intrusion was generated by flush melting of the asthenosphere and subsequently there was about 10 vol%contamination from a granitic melt. This was followed by about 5 vol% assimilation of upper crustal rocks. Thus, the high-Mg basaltic parental magma of Sidingheishan intrusion is interpreted to have formed from partial melting of the asthenosphere during the break-off of a subducted slab.  相似文献   
995.
The north trending rifts in southern Tibet represent the E–W extension of the plateau and confirming the initial rifting age is key to the study of mechanics of these rifts. Pagri–Duoqing Co graben is located at southern end of Yadong–Gulu rift, where the late Cenozoic sediments is predominately composed of fluvio-lacustrine and moraine. Based on the sedimentary composition and structures, the fluvio-lacustrine could be divided into three facies, namely, lacustrine, lacustrine fan delta and alluvial fan. The presence of paleo-currents and conglomerate components and the provenance of the strata around the graben indicate that it was Tethys Himalaya and High Himalaya. Electron spin resonance (ESR) dating and paleo-magnetic dating suggest that the age of the strata ranges from ca. 1.2 Ma to ca. 8 Ma. Optically stimulated luminescence (OSL) dating showed that moraine in the graben mainly developed from around 181–109 ka (late Middle Pleistocene). Combining previous data about the Late Cenozoic strata in other basins, it is suggested that 8–15 Ma may be the initial rifting time. Together with sediment distribution and drainage system, the sedimentary evolution of Pagri could be divided into four stages. The graben rifted at around 15–8 Ma due to the eastern graben-boundary fault resulting in the appearance of a paleolake. Following by a geologically quiet period about 8–2.5 Ma, the paleolake expanded from east to west at around 8–6 Ma reaching its maximum at ca. 6 Ma. Then, the graben was broken at about 2.5 Ma. At last, the development of the glacier separated the graben into two parts that were Pagri and Duoqing Co since the later stages of the Middle Pleistocene. The evolution process suggested that the former three stages were related to the tectonic movement, which determined the basement of the graben, while the last stage may have been influenced by glacial activity caused by climate change.  相似文献   
996.
A new ootype collected from the Upper Cretaceous Lijiacun Formation in the Shangdan Basin, Shaanxi Province is described in this paper. Based on general external shape, size, eggshell thickness and honeycomb‐like eggshell microstructure, eggs are referable to the oofamily Faveoloolithidae. Compared with other members of Faveoloolithidae, specimens described in this paper show special characteristics: adjacent pores are usually separated by two eggshell units between which often develop interspaces; columnar eggshell units are relatively closely arranged in radial view. According to these characteristics, we erect a new oogenus and a new oospecies: Duovallumoolithus shangdanensis oogen. et oosp. nov. The new discovery expands the diversity of Faveoloolithidae.  相似文献   
997.
The Jiangaidarina granitic mass(JM) is an important part of the magmatic belt in Longmu CoShuanghu Suture Zone(LSSZ) in the central Tibetan Plateau. An integrated research involving wholerock geochemistry, zircon LA-ICP-MS U-Pb ages and Hf isotopic compositions was carried out to define the timing, genesis and tectonic setting of the JM. Zircon LA-ICP-MS U-Pb ages have been obtained ranging from 210 to 215 Ma, rather than the Early Jurassic as previously thought. Fifteen granite samples contain hornblendes and show a negative correlation between P_2 O_5 and SiO_2, indicating that the JM is an I-type granite. All the granites are enriched in LREE relative to HREE, with negative Eu anomalies(Eu/Eu*=0.56-0.81), and have similar trace elements patterns, with depletion of Ba, Nb, Sr and P. These suggest that the JM was fractionated, and this is also proved by the characteristic of negative correlations between oxide elements(TiO_2, MgO, FeOt, MnO, CaO) and SiO_2. Almost all ε_(Hf)(t) values of the granites are between-10.3 and-5.8, implying that the JM has a crustal source intimately related with the South Qiangtang Block(SQB), except for one(+10.2), showing a minor contribution from mantle source.Moreover, relatively low Na_2 O/K_2 O ratios(0.42-0.93) and high A/CNK values(0.91-1.50) reflect that the JM was predominately derived from the medium-high potassium basaltic crust, interacted with greywacke. Our new geochemical data and geochronological results imply that the Late Triassic magmas were generated in a post-collisional tectonic setting, probably caused by slab break-off of the Longmu Co-Shuanghu Tethyan Ocean(LSTO). This mechanism caused the asthenosphere upwelling, formed extension setting, offered an enormous amount of heat, and provided favorable conditions for emplacement of voluminous felsic magmas. Furthermore, the LSTO could be completely closed during the Middle Triassic, succeed by continental collision and later the slab broke off in the Late Triassic.  相似文献   
998.
The Three Gorges are considered to be critical to understand the formation of Yangtze River. Recent research results suggest that the Yangtze Three Gorges was created during the Quaternary but the exact time is debatable. Fe–Ti oxide minerals are seldom used to study sediment provenance, expecially using scanning electron microscopy(SEM), and energy dispersive spectrometer(EDS). In this study, the provenance of Quaternary sediments in Yichang area, which is located to the east of the Yangtze Three Gorges, was investigated by using SEM and EDS to research Fe–Ti oxides. The Panzhihua vanadium titanomagnetite and Emeishan basalt outcrop are located to the west of the Three Gorges. Further, the materials from them are observed in the Quaternary sediments of Yichang area. Fe–Ti oxide minerals from the Huangling granite are observed in the Yunchi and Shanxiyao Formations, which were formed before 0.75 Ma B.P., whereas Fe–Ti oxide minerals from the Huangling granite, Panzhihua vanadium titanomagnetite, and Emeishan basalt are observed in the riverbed and fifth-terrace sediments of the Yangtze River, which were formed after 0.73 Ma B.P.. Thus, we can infer that the Three Gorges formed after the deposition of the Shanxi Formation and before the fifth-terrace; i.e., 0.75–0.73 Ma B.P..  相似文献   
999.
南海南部陆缘蕴藏着非常丰富的油气资源。为了解南海南部陆缘流体活动系统以及与油气藏之间的关系,以高精度2D地震资料为基础,对南海南部陆缘流体活动系统的类型、地震反射特征、以及对油气成藏的意义开展了研究。在南海南部陆缘发现了多种流体活动系统,包括:泥底辟/泥火山、气烟囱、管状通道、与构造断层相关的流体活动系统。这些流体活动系统具有不同的地震反射特征,常常出现含气强振幅异常带、弱振幅杂乱反射带以及"下拉"或者"上拱"地震反射形态等流体活动系统的标志特征。流体活动系统受到构造运动和沉积因素的影响,并且与深部高温高压塑性流体密切相关,流体活动系统优先发育在地层薄弱部位。流体活动系统及所伴生的断裂和裂隙常常作为油气富集区的运输通道;并且流体活动系统所运移的强溶蚀性流体和深部热液流体有利于油气储层的形成,特别是对于碳酸盐岩储层的改造尤为明显。因此,流体活动系统不仅能作为油气运移通道,也可以改善储层,对油气成藏具有重要意义。  相似文献   
1000.
中国航磁大地构造单元划分   总被引:4,自引:3,他引:1       下载免费PDF全文
本文以我国截止到2011年基本覆盖陆域及部分海域的航磁数据编制的全国航磁系列图为基础,以航磁反映的区域磁场和磁性基底起伏特征为依据,汲取主流大地构造观的划分理念,以板块构造理论及大陆动力学思想为指导,以磁场反映的构造特征为切入点,结合重力、遥感、地质资料对中国陆域构造单元进行划分。大地构造单元划分4个级别:一级构造单元为陆块区和造山系,共划分出8个;二级构造单元为陆块、弧盆系和地块,共划分出32个;三级构造单元为盆地、坳陷带(区)和隆起带(区),共划分出85个;四级构造单元为隆起和坳陷,共划分出332个。本划分方案旨在为油气地质构造背景研究及油气勘探提供一份地球物理资料。文中重点讨论了一、二级构造单元界线厘定的磁场依据及与前人划分存在的不同之处,而三、四级构造单元完全依据磁场及磁性基底起伏情况进行划分,并在盆地和坳陷区给出了深度信息,这为油气勘探者提供了必要的技术支撑。同时,借助丰富的航磁信息提示出一些地质构造方面难解现象,供同行专家参考与讨论。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号