首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3927篇
  免费   929篇
  国内免费   586篇
测绘学   188篇
大气科学   221篇
地球物理   1205篇
地质学   2543篇
海洋学   329篇
天文学   13篇
综合类   215篇
自然地理   728篇
  2024年   16篇
  2023年   38篇
  2022年   91篇
  2021年   152篇
  2020年   176篇
  2019年   192篇
  2018年   165篇
  2017年   219篇
  2016年   211篇
  2015年   185篇
  2014年   233篇
  2013年   323篇
  2012年   217篇
  2011年   241篇
  2010年   192篇
  2009年   264篇
  2008年   266篇
  2007年   273篇
  2006年   277篇
  2005年   210篇
  2004年   218篇
  2003年   186篇
  2002年   158篇
  2001年   130篇
  2000年   112篇
  1999年   105篇
  1998年   108篇
  1997年   99篇
  1996年   70篇
  1995年   72篇
  1994年   53篇
  1993年   30篇
  1992年   34篇
  1991年   25篇
  1990年   19篇
  1989年   18篇
  1988年   18篇
  1987年   8篇
  1986年   7篇
  1985年   7篇
  1984年   7篇
  1983年   2篇
  1982年   3篇
  1981年   4篇
  1980年   4篇
  1978年   1篇
  1977年   1篇
  1954年   2篇
排序方式: 共有5442条查询结果,搜索用时 31 毫秒
991.
Intensive field monitoring of a reach of upland gravel‐bed river illustrates the temporal and spatial variability of in‐channel sedimentation. Over the six‐year monitoring period, the mean bed level in the channel has risen by 0·17 m with a maximum bed level rise of 0·5 m noted at one location over a five month winter period. These rapid levels of aggradation have a profound impact on the number and duration of overbank flows with flood frequency increasing on average 2·6 times and overbank flow time increasing by 12·8 hours. This work raises the profile of coarse sediment transfer in the design and operation of river management, specifically engineering schemes. It emphasizes the need for the implementation of strategic monitoring programmes before engineering work occurs to identify zones where aggradation is likely to be problematic. Exploration of the sediment supply and transfer system can explain patterns of channel sedimentation. The complex spatial, seasonal and annual variability in sediment supply and transfer raise uncertainties into the system's response to potential changes in climate and land‐use. Thus, there is a demand for schemes that monitor coarse sediment transfer and channel response. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
992.
This paper investigates the impact of a 1000‐year flood in August 2002 on floodplains and valley morphology of an Austrian mixed alluvial bed rock river. Discharges with a recurrence interval between 500 and 2000 years caused distinctive overbank scouring and material deposition in the floodplains. After the 1000‐year flood, those morphologically affected areas were at random intervals documented over the whole longitudinal profile. In addition to overbank erosion in curved sections (cut‐offs), the river bed locally widened, floodplain stripping occurred and local overbank scours were documented along straight parts of the river. A hydrodynamic‐numerical model, combined with field measurements, was used to analyse the cause of these erosional landforms. Based on the modelled hydraulic conditions for a one‐year flood (30–78 ms–1) and the catastrophic 2002 event (700–800 ms–1), the numerical results allowed a cause‐effect study with 19 parameters. Deterministic and statistical analysis (ANOVA, discriminant analysis) showed that the morphodynamic effects of the 2002 flood were influenced by the variability of valley morphology of the Kamp River, which led partially to supercritical flow during flood constriction. These processes were in some cases also anthropogenically influenced. Lateral constriction and expansion of the valley geometry over short distances led to scouring and aggradation within the inundated areas during the event. These morphological features were therefore responsible for the elongated scour holes in the floodplains. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
993.
The saltation–abrasion model predicts rates of river incision into bedrock as an explicit function of sediment supply, grain size, boundary shear stress and rock strength. Here we use this experimentally calibrated model to explore the controls on river longitudinal profile concavity and relief for the simple but illustrative case of steady‐state topography. Over a wide range of rock uplift rates we find a characteristic downstream trend, in which upstream reaches are close to the threshold of sediment motion with large extents of bedrock exposure in the channel bed, while downstream reaches have higher excess shear stresses and lesser extents of bedrock exposure. Profile concavity is most sensitive to spatial gradients in runoff and the rate of downstream sediment fining. Concavity is also sensitive to the supply rate of coarse sediment, which varies with rock uplift rate and with the fraction of the total sediment load in the bedload size class. Variations in rock strength have little influence on profile concavity. Profile relief is most sensitive to grain size and amount of runoff. Rock uplift rate and rock strength influence relief most strongly for high rates of rock uplift. Analysis of potential covariation of grain size with rock uplift rate and rock strength suggests that the influence of these variables on profile form could occur in large part through their influence on grain size. Similarly, covariation between grain size and the fraction of sediment load in the bedload size class provides another indirect avenue for rock uplift and strength to influence profile form. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
994.
In June 2003, we conducted a two-part field exercise to examine biogeochemical characteristics of water in the lower Mississippi river during the 4 days prior to discharge and in the Mississippi river plume over 2 days after discharge. Here we describe the fates of materials immediately after their discharge through Southwest Pass of the Mississippi delta into the northern Gulf of Mexico. Changes in surface water properties immediately after discharge were much larger and more rapid than changes prior to discharge. Total suspended matter (TSM) declined, probably due to sinking, dissolved macronutrients were rapidly diminished by mixing and biological uptake, and phytoplankton populations increased dramatically, and then declined. This decline appeared to begin at salinities of approximately 10 and was nearly complete by 15. A large increase in dissolved organic carbon (DOC) occurred over approximately the same salinity range. Weak winds (<2 m s−1) during and preceding this cruise apparently led to the formation of an extensive but thin freshwater lens from the river. This lens spread widely without much mixing, and the bloom of phytoplankton that occurred between discharge and a salinity of 10 was probably a freshwater community seeded from the lower river. Phytoplankton bloomed for a period of about 1–2 days, then declined dramatically, apparently releasing large amounts of DOC. Macronutrients from the river were utilized by the river phytoplankton community in the extensive freshwater lens. This contrasted with the more typical situation in which river nutrients stimulate a marine phytoplankton bloom at salinities in the mid-20s. We concluded that the direct effects of dissolved and particulate bio-reactive materials discharged by the Mississippi river were spatially restricted at this time to low-salinity water, at least as surface phenomena. After being transported through the lower river essentially unaltered, these materials were biogeochemically processed within days and tens of km. More generally, the mixing rate of plume water with receiving oceanic water has profound effects on the food web structure and biogeochemical cycling in the plume.  相似文献   
995.
Stratigraphic reconstruction of the Upper Pollara eruption has allowed for the inference of eruptive mechanisms and the distillation of a sedimentological model for pyroclastic density currents (PDCs) moving across variable topography. The pre-eruptive topography in the study area was characterised by a tuff ring-like morphology, with both inward and outward dipping slopes. Highly viscous, moderately porphyritic, dacitic to rhyolitic magmas fed the eruption, which was characterised by a Vulcanian eruptive style. The stratigraphic succession was divided into five eruption units (EUs), which result from different phases of the eruption separated by stases. Sustained columns occurred only during EU1, while PDC generation dominates EU2–5. Lithofacies analysis of the PDC deposits indicates the prevalence of massive coarse-grained deposits on the inner slopes of the Pollara crater, which are interpreted as the deposits of a flow-boundary zone dominated by granular flow or fluid escape regimes. Dune-bedded, massive to stratified lithofacies dominate the outer slopes of the Pollara crater, and are interpreted as the deposits of PDCs with flow-boundary zones in which traction played a major role. Thin, massive PDC deposits are exposed on the sub-horizontal Malfa terrace, and are interpreted as representative of flow-boundary zones dominated by a granular flow regime. The occurrence of stacked deposits indicates that most of the PDCs were characterised by unsteady pulsatory behaviour, with development of trains of pulses during their transport. The downcurrent lithofacies transitions observed for the Upper Pollara deposits have finally been compared with other similar lithofacies associations which have been described for short-lived PDCs at tuff rings, in order to discuss the influence of pre-eruptive topography on lithofacies association.  相似文献   
996.
The role of wood as a driver of landform development appears to have been overlooked in the interpretation of palaeo‐landscape change along river corridors. Deforested river corridors and wood‐free rivers characterize ‘modern’, managed landscapes, but along natural river corridors both driftwood dynamics and tree reproductive strategies can have a dramatic impact on the style and rate of channel and floodplain development. Therefore, we believe that interpretations of the post‐glacial history of river valleys across the northern temperate climatic zone could be usefully reassessed, incorporating the roles of riparian trees. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
997.
River restoration and bank stabilization programs often use vegetation for improving stream corridor habitat, aesthetic and function. Yet no study has examined the use of managed vegetation plantings to transform a straight, degraded stream corridor into an ecologically functional meandering channel. Experimental data collected using a distorted Froude‐scaled flume analysis show that channel expansion and widening, thalweg meandering and riffle and pool development are possible using discrete plantings of rigid, emergent vegetation, and the magnitudes of these adjustments depend on the shape of the vegetation zone and the density of the vegetation. These experimental results were verified and validated using a recently developed numerical model, and model output was then used to discuss mechanistically how rivers respond to the introduction of in‐stream woody vegetation. Finally, a hybrid method of meander design is proposed herein where managed vegetation plantings are used to trigger or force the desired morphologic response, transforming a straight, degraded reach into a more functional meandering corridor. It is envisioned that such numerical models could become the primary tool for designing future stream restoration programs involving vegetation and assessing the long‐term stability of such activities. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
998.
Truncation of the distribution of ground-motion residuals   总被引:4,自引:3,他引:1  
Recent studies to assess very long-term seismic hazard in the USA and in Europe have highlighted the importance of the upper tail of the ground-motion distribution at the very low annual frequencies of exceedance required by these projects. In particular, the use of an unbounded lognormal distribution to represent the aleatory variability of ground motions leads to very high and potentially unphysical estimates of the expected level of shaking. Current practice in seismic hazard analysis consists of truncating the ground-motion distribution at a fixed number (ε max) of standard deviations (σ). However, there is a general lack of consensus regarding the truncation level to adopt. This paper investigates whether a physical basis for choosing ε max can be found, by examining records with large positive residuals from the dataset used to derive one of the ground-motion models of the Next Generation Attenuation (NGA) project. In particular, interpretations of the selected records in terms of causative physical mechanisms are reviewed. This leads to the conclusion that even in well-documented cases, it is not possible to establish a robust correlation between specific physical mechanisms and large values of the residuals, and thus obtain direct physical constraints on ε max. Alternative approaches based on absolute levels of ground motion and numerical simulations are discussed. However, the choice of ε max is likely to remain a matter of judgment for the foreseeable future, in view of the large epistemic uncertainties associated with these alternatives. Additional issues arise from the coupling between ε max and σ, which causes the truncation level in terms of absolute ground motion to be dependent on the predictive equation used. Furthermore, the absolute truncation level implied by ε max will also be affected if σ is reduced significantly. These factors contribute to rendering a truncation scheme based on a single ε max value impractical.  相似文献   
999.
云南开远南洞地下河水质演变特征   总被引:4,自引:4,他引:0  
张贵  周翠琼  康晓波 《中国岩溶》2008,27(4):366-370
在云南开远南洞地下河出口,连续19年采取旱、雨季水样进行水质变化监测,结果表明: ( 1)整体上地下水水质旱季好于雨季,历年旱季水质类型以良好为主,雨季则以较差为主; ( 2)水质变化阶段性明显: 1987— 1993年,离子浓度普遍较低,旱、雨季波动不大,水质多属Ⅰ 、Ⅱ 类,有机污染以NH+4 、NO-3 等为主; 1994—2000年,旱、雨季离子浓度均普遍升高且变化加剧, N H+4 、As、Cd、Cr、Mn出现历年最大值,金属离子污染日趋加剧,水质以Ⅱ 、Ⅲ 类为主; 2001— 2005年,旱、雨季离子浓度有升有降,以升为主, Pb、Zn、Cl- 、SO2-4 出现历年最大值,水质以Ⅱ 、Ⅲ 类为主。南洞地下河水质19年来发生了较大的变化,污染日趋严重。分析认为该地下河水质逐步变差与上游补给区盆地内经济发展状况密切相关。为此,提出了采用自动监测等方法加强地下河动态变化监测研究以及实行分区、分级管理等水质保护的具体对策建议。   相似文献   
1000.
苏北盆地东部凹陷上白垩统泰州组沉积相*   总被引:1,自引:1,他引:0       下载免费PDF全文
陆英  孙自明 《古地理学报》2008,10(3):261-270
苏北盆地是在晚白垩世发育起来的箕状断陷盆地。上白垩统泰州组(K2t)为东部凹陷发育初期形成的一套碎屑岩沉积地层,自下而上总体构成由粗到细的沉积旋回。通过对区内52口探井的录井、测井和岩心资料综合分析,认为泰州组主要发育辫状河三角洲、曲流河三角洲及湖泊相3种沉积相类型,在此基础上又进一步识别出7种亚相和12种微相。泰州组分为两段,泰州组一段沉积早、中期为辫状河三角洲沉积,晚期转变为(曲流河)三角洲沉积;泰州组二段早期为深湖—半深湖沉积,中晚期为浅湖亚相。伴随湖平面的反复升降,表现出明显的多旋回性。研究区泰州组一段表现为典型的退积型三角洲沉积。通过进一步研究泰州组一段各沉积时期沉积相的平面分布及演变特征,指出在梁垛—安丰—李堡一带沉积砂体发育,是油气储集层发育的有利地区。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号