首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20400篇
  免费   5495篇
  国内免费   6354篇
测绘学   370篇
大气科学   1869篇
地球物理   3131篇
地质学   20853篇
海洋学   1644篇
天文学   146篇
综合类   1580篇
自然地理   2656篇
  2024年   149篇
  2023年   417篇
  2022年   836篇
  2021年   1020篇
  2020年   904篇
  2019年   1246篇
  2018年   1045篇
  2017年   1227篇
  2016年   1299篇
  2015年   1252篇
  2014年   1512篇
  2013年   1507篇
  2012年   1570篇
  2011年   1624篇
  2010年   1422篇
  2009年   1613篇
  2008年   1401篇
  2007年   1562篇
  2006年   1409篇
  2005年   1203篇
  2004年   1018篇
  2003年   913篇
  2002年   770篇
  2001年   735篇
  2000年   631篇
  1999年   645篇
  1998年   490篇
  1997年   482篇
  1996年   440篇
  1995年   381篇
  1994年   330篇
  1993年   266篇
  1992年   251篇
  1991年   176篇
  1990年   139篇
  1989年   95篇
  1988年   88篇
  1987年   34篇
  1986年   33篇
  1985年   21篇
  1984年   14篇
  1983年   5篇
  1982年   7篇
  1981年   10篇
  1980年   16篇
  1979年   9篇
  1978年   12篇
  1977年   15篇
  1976年   1篇
  1954年   4篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
31.
根据第四纪地层内孢粉组合和动物群等新资料恢复了我国东部各大区域第四纪各个时期的自然环境特征,其温暖期与干冷期的交替与深海沉积O~(18)温度变化趋势大致对应。庐山三次“冰期冰碛层”内孢粉组合表明均为温暖湿润针阔叶混交林景观,而不是寒冷的冰川环境。  相似文献   
32.
提出川滇地洼系“四层楼”铜矿床序列的形成与陆壳演化的成生联系,是与本区陆壳由前地槽—地槽—地台—地洼演化各阶段与之相匹配的成矿作用的产物.与此同时,并总结了本区“四层楼”铜矿床序列的成矿作用具有明显的继承性、新生性、旋回性及层控性四大特点和多因复成矿床的成矿模式.  相似文献   
33.
贵州和四川盆地云量的气候研究   总被引:1,自引:1,他引:0  
贵州和四川盆地是我国云量最多的地区,素有“天无三日晴”和“蜀犬吠日”之说,盆地西缘的雅安古时还有“雅州天漏”的谚语。从全球日照百分率分布推知,川黔地区也是世界上天气最阴沉的地区之一。川黔之阴一向为国内外气象界所注意,本文根据1951—1980  相似文献   
34.
The Late Permian (Wuchiapingian) Alcotas Formation in the SE Iberian Ranges consists of one red alluvial succession where abundant soil profiles developed. Detailed petrographical and sedimentological studies in seven sections of the Alcotas Formation allow six different types of palaeosols, with distinctive characteristics and different palaeogeographical distribution, to be distinguished throughout the South‐eastern Iberian Basin. These characteristics are, in turn, related to topographic, climatic and tectonic controls. The vertical distribution of the palaeosols is used to differentiate the formation in three parts from bottom to top showing both drastic and gradual vertical upwards palaeoenvironmental changes in the sections. Reconstruction of palaeoenvironmental conditions based on palaeosols provides evidence for understanding the events that occurred during the Late Permian, some few millions of years before the well‐known Permian‐Triassic global crisis.  相似文献   
35.
36.
Timing of the Nihewan formation and faunas   总被引:2,自引:0,他引:2  
Magnetostratigraphic dating of the fluvio-lacustrine sequence in the Nihewan Basin, North China, has permitted the precise timing of the basin infilling and associated Nihewan mammalian faunas. The combined evidence of new paleomagnetic findings from the Hongya and Huabaogou sections of the eastern Nihewan Basin and previously published magnetochronological data suggests that the Nihewan Formation records the tectono-sedimentary processes of the Plio-Pleistocene Nihewan Basin and that the Nihewan faunas can be placed between the Matuyama-Brunhes geomagnetic reversal and the onset of the Olduvai subchron (0.78-1.95 Ma). The onset and termination of the basin deposition occurred just prior to the Gauss-Matuyama geomagnetic reversal and during the period from the last interglaciation to the late last glaciation, respectively, suggesting that the Nihewan Formation is of Late Pliocene to late Pleistocene age. The Nihewan faunas, comprising a series of mammalian faunas (such as Maliang, Donggutuo, Xiaochangliang, Banshan, Majuangou, Huabaogou, Xiashagou, Danangou and Dongyaozitou), are suggested to span a time range of about 0.8-2.0 Ma. The combination of our new and previously published magnetostratigraphy has significantly refined the chronology of the terrestrial Nihewan Formation and faunas.  相似文献   
37.
The regionally extensive, coarse-grained Bakhtiyari Formation represents the youngest synorogenic fill in the Zagros foreland basin of Iran. The Bakhtiyari is present throughout the Zagros fold-thrust belt and consists of conglomerate with subordinate sandstone and marl. The formation is up to 3000 m thick and was deposited in foredeep and wedge-top depocenters flanked by fold-thrust structures. Although the Bakhtiyari concordantly overlies Miocene deposits in foreland regions, an angular unconformity above tilted Paleozoic to Miocene rocks is expressed in the hinterland (High Zagros).

The Bakhtiyari Formation has been widely considered to be a regional sheet of Pliocene–Pleistocene conglomerate deposited during and after major late Miocene–Pliocene shortening. It is further believed that rapid fold growth and Bakhtiyari deposition commenced simultaneously across the fold-thrust belt, with limited migration from hinterland (NE) to foreland (SW). Thus, the Bakhtiyari is generally interpreted as an unmistakable time indicator for shortening and surface uplift across the Zagros. However, new structural and stratigraphic data show that the most-proximal Bakhtiyari exposures, in the High Zagros south of Shahr-kord, were deposited during the early Miocene and probably Oligocene. In this locality, a coarse-grained Bakhtiyari succession several hundred meters thick contains gray marl, limestone, and sandstone with diagnostic marine pelecypod, gastropod, coral, and coralline algae fossils. Foraminiferal and palynological species indicate deposition during early Miocene time. However, the lower Miocene marine interval lies in angular unconformity above ~ 150 m of Bakhtiyari conglomerate that, in turn, unconformably caps an Oligocene marine sequence. These relationships attest to syndepositional deformation and suggest that the oldest Bakhtiyari conglomerate could be Oligocene in age.

The new age information constrains the timing of initial foreland-basin development and proximal Bakhtiyari deposition in the Zagros hinterland. These findings reveal that structural evolution of the High Zagros was underway by early Miocene and probably Oligocene time, earlier than commonly envisioned. The age of the Bakhtiyari Formation in the High Zagros contrasts significantly with the Pliocene–Quaternary Bakhtiyari deposits near the modern deformation front, suggesting a long-term (> 20 Myr) advance of deformation toward the foreland.  相似文献   

38.
In the Bavarian Alps (Germany), west of the Isar River, the abyssal deposits of the Lower Barremian to Upper Campanian Rhenodanubian Group consist of siliciclastic and calcareous turbidites alternating with hemipelagic non-calcareous mudstones. The up to 1500-m-thick succession, deposited in the Penninic Basin to the south of the European Plate, is characterized by a low mean sedimentation rate (c. 25 mm kyr−1) over 60 million years. Palaeocurrents and turbidite facies distribution patterns suggest that sedimentation occurred on a weakly inclined abyssal plain. The highest sedimentation rates (up to 240 mm kyr−1) were associated with the calcareous mud turbidites of the newly defined Röthenbach Subgroup, which includes the Piesenkopf, Kalkgraben and Hällritz formations (Middle Coniacian to Middle Campanian). These calcareous turbidites prograded from the west, and interfinger towards the east with red hemipelagic claystone. A high sea level presumably favoured pelagic carbonate production and accumulation on the shelves and on internal platforms in the western part of the basin, whereas siliciclastic shelves with steep slope angles have bordered the eastern part of the basin, where a dearth of turbidite sedimentation and increased Cretaceous oceanic red beds deposition occurred. In contrast to the eustatically-induced Middle Coniacian to Lower Campanian Cretaceous oceanic red beds (calcareous nannoplankton zones CC14 to CC18), red hemipelagites of Early Cenomanian age (upper part of calcareous nannoplankton zone CC9) and early Late Campanian age (upper part of zone CC21 and zone CC22) are interpreted as the result of regional tectonic activity.  相似文献   
39.
This is a critical assessment of the paper by Oszczypko et al. (2004: Cretaceous Research 25, 89–113), in which they tried to prove a mid-Cretaceous age for the Szlachtowa (“black flysch”) and Opaleniec Formations, in the Pieniny Klippen Belt, West Carpathians, both of which had previously been shown to be of Jurassic age. We argue that the mid-Cretaceous age assignment is a misinterpretation, primarily resulting from their field samples having been collected from some Cretaceous lithostratigraphic units, tectonically associated with the Jurassic formations, and/or from tectonic contact-breccias involving Jurassic and Cretaceous strata. In addition, we suggest that they have overlooked a number of significant palaeontological papers, published since 1962, which record the presence of in situ ammonites, aptychi, belemnites, thin-shelled bivalves (Bositra), gryphaeids, foraminifera, and ostracod assemblages, all indicating a Jurassic (mainly Aalenian), and not a Cretaceous, age for the Szlachtowa Formation, and also the in situ Jurassic (Bajocian) ammonites and thin-shelled bivalves (Bositra), Bositra-microfacies, and age-diagnostic foraminiferal assemblages of the Opaleniec Formation.Our presentation here of recently published dinocyst data from well-preserved assemblages further supports the Jurassic ages for the Szlachtowa (“black flysch”) and Opaleniec Formations.  相似文献   
40.
Upper Cretaceous platform carbonates of the Vocontian Basin (southeastern France) have been investigated in a cross-section from the proximal deposits exposed in the lower Rhône Valley to the distal part of the basin in the Southern Subalpine Ranges north of Nice. The stratigraphic interval studied in detail spans the uppermost Turonian and Coniacian.Palynofacies patterns were used to detect eustatic signals at a third-order scale and are the tool for correlation of proximal and distal platform deposits. The organic constituents observed in the studied samples have been grouped into a continental fraction, including higher plant debris (phytoclasts) and sporomorphs, and a marine fraction with dinoflagellate cysts, acritarchs, prasinophytes, and foraminiferal test linings. The main factors influencing the stratigraphic and spatial distribution of land-derived, allochthonous, and marine, relatively autochthonous, organic particles are the proximity of land, the organic productivity, the degree of biodegradation and the hydrodynamic conditions of the depositional system. Palynofacies parameters used for the sequence stratigraphic interpretation are: (1) the ratio of continental to marine constituents (CONT/MAR ratio); (2) the ratio of opaque to translucent phytoclasts (OP/TR ratio); (3) the phytoclast particle size and shape; and (4) the relative proportion and species diversity of marine plankton. Ternary diagrams illustrating significant proximality changes were used to decipher transgressive-regressive trends within the succession.High amounts of translucent phytoclasts and decreasing values of the CONT/MAR ratio occur during the phase of relative sea-level rise in the upper Turonian. The stratigraphic interval of maximum flooding around the Turonian/Coniacian boundary is marked by the highest abundance and species diversity of dinoflagellate cysts, and by high percentages of opaque, equidimensional particles within the phytoclast group. The OP/TR ratio is still high within the lower Coniacian representing the early highstand deposits, whereas the relative abundance of marine constituents is again decreasing. Sedimentary organic matter of the upper Coniacian is dominated by large, blade-shaped, mainly opaque phytoclasts, which are a characteristic palynofacies signature of late highstand deposits.The present study demonstrates the high potential of palynofacies analysis in high-resolution stratigraphy and correlation of sedimentary series of shallow epeiric seas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号