首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1988篇
  免费   521篇
  国内免费   695篇
测绘学   11篇
大气科学   72篇
地球物理   255篇
地质学   2639篇
海洋学   70篇
天文学   8篇
综合类   82篇
自然地理   67篇
  2024年   12篇
  2023年   32篇
  2022年   41篇
  2021年   55篇
  2020年   75篇
  2019年   90篇
  2018年   96篇
  2017年   113篇
  2016年   123篇
  2015年   108篇
  2014年   145篇
  2013年   179篇
  2012年   140篇
  2011年   152篇
  2010年   115篇
  2009年   156篇
  2008年   157篇
  2007年   148篇
  2006年   163篇
  2005年   124篇
  2004年   117篇
  2003年   92篇
  2002年   90篇
  2001年   66篇
  2000年   76篇
  1999年   87篇
  1998年   68篇
  1997年   72篇
  1996年   68篇
  1995年   46篇
  1994年   43篇
  1993年   27篇
  1992年   37篇
  1991年   21篇
  1990年   17篇
  1989年   11篇
  1988年   12篇
  1987年   7篇
  1986年   2篇
  1985年   4篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   3篇
  1980年   4篇
  1978年   1篇
  1977年   1篇
  1954年   2篇
排序方式: 共有3204条查询结果,搜索用时 31 毫秒
41.
The first discovery of dinosaur footprints on the Dalmatian part of the Adriatic-Dinaric carbonate platform (ADCP) is reported. They constitute the geologically youngest record of footprints on the ADCP. The trackbearing layer was formed in the intertidal environment and represents the final stage of a shallowing-upward cycle. Just below it, a heavy dinoturbated limestone layer can be observed. Microfacies analysis, incorporating evidence from benthic foraminifera and algae, indicates a Late Turonian–Early Coniacian age. The overall morphology and size of the footprints points to sauropod dinosaurs; they represent the largest forms recorded so far on the ADCP. This hints at a prolonged sauropod presence on the platform and to its Late Cretaceous connection to the continent rather than isolation.  相似文献   
42.
Several long-range seismic profiles were carried out in Russia with Peaceful Nuclear Explosions (PNE). The data from 25 PNEs recorded along these profiles were used to compile a 3-D upper mantle velocity model for the central part of the Northern Eurasia. 2-D crust and upper mantle models were also constructed for all profiles using a common methodology for wavefield interpretation. Five basic boundaries were traced over the study area: N1 boundary (velocity level, V = 8.35 km/s; depth interval, D = 60–130 km), N2 (V = 8.4 km/s; D = 100–140 km), L (V = 8.5 km/s; D = 180–240 km) and H (V = 8.6 km/s; D = 300–330 km) and structural maps were compiled for each boundary. Together these boundaries describe a 3-D upper mantle model for northern Eurasia. A map characterised the velocity distribution in the uppermost mantle down to a depth of 60 km is also presented. Mostly horizontal inhomogeneity is observed in the uppermost mantle, and the velocities range from the average 8.0–8.1 km/s to 8.3–8.4 km/s in some blocks of the Siberian Craton. At a depth of 100–200 km, the local high velocity blocks disappear and only three large anomalies are observed: lower velocities in West Siberia and higher velocities in the East-European platform and in the central part of the Siberian Craton. In contrast, the depths to the H boundary are greater beneath the craton and lower beneath in the West Siberian Platform. A correlation between tectonics, geophysical fields and crustal structure is observed. In general, the old and cold cratons have higher velocities in the mantle than the young platforms with higher heat flows.Structural peculiarities of the upper mantle are difficult to describe in form of classical lithosphere–asthenosphere system. The asthenosphere cannot be traced from the seismic data; in contrary the lithosphere is suggested to be rheologically stratified. All the lithospheric boundaries are not simple discontinuities, they are heterogeneous (thin layering) zones which generate multiphase reflections. Many of them may be a result of fluids concentrated at some critical PT conditions which produce rheologically weak zones. The most visible rheological variations are observed at depths of around 100 and 250 km.  相似文献   
43.
Observations of upper mantle reflectivity at numerous locations around the world have been linked to the presence of a heterogeneous distribution of rock types within a broad layer of the upper mantle. This phenomenon is observed in wide-angle reflection data from Lithoprobe's Alberta Basement Transect [the SAREX and Deep Probe experiments of 1995] and Trans-Hudson Orogen Transect [the THoRE experiment of 1993]. SAREX and Deep Probe image the Archaean lithosphere of the Hearne and Wyoming Provinces, whereas THoRE images the Archaean and Proterozoic lithosphere of the Trans-Hudson Orogen and neighbouring areas.Finite-difference synthetic seismograms are used to constrain the position and physical properties of the reflective layer. SAREX/Deep Probe modelling uses a 2-D visco-elastic finite-difference routine; THoRE modelling uses a pseudospectral algorithm. In both cases, the upper mantle is parameterized in terms of two media. One medium is the background matrix; the other is statistically distributed within the first as a series of elliptical bodies. Such a scheme is suitable for modelling: (1) variations in lithology (e.g., a peridotite matrix with eclogite lenses) or (2) variations in rheology (e.g., lenses of increased strain within a less strained background).The synthetic seismograms show that the properties of heterogeneities in the upper mantle do not change significantly between the two Lithoprobe transects. Beneath the Trans-Hudson Orogen in Saskatchewan, the layer is best modelled to lie at depths between 80 and 150 km. Based on observations from perpendicular profiles, anisotropy of the heterogeneities is inferred. Beneath the Precambrian domains of Alberta, 400 km to the west, upper mantle heterogeneities are modelled to occur between depths of 90 and 140 km. In both cases the heterogeneous bodies within the model have cross-sectional lengths of tens of kilometers, vertical thicknesses less than 1 km, and velocity contrasts from the background of − 0.3 to − 0.4 km/s. Based on consistency with complementary data and other results, the heterogeneous layer is inferred to be part of the continental lithosphere and may have formed through lateral flow or deformation within the upper mantle.  相似文献   
44.
The Guará and Botucatu formations comprise an 80 to 120 m thick continental succession that crops out on the western portion of the Rio Grande do Sul State (Southernmost Brazil). The Guará Formation (Upper Jurassic) displays a well-defined facies shift along its outcrop belt. On its northern portion it is characterised by coarse-grained to conglomeratic sandstones with trough and planar cross-bedding, as well as low-angle lamination, which are interpreted to represent braided river deposits. Southwards these fluvial facies thin out and interfinger with fine- to medium-grained sandstones with large-scale cross-stratification and horizontal lamination, interpreted as eolian dune and eolian sand sheets deposits, respectively. The Botucatu Formation is characterised by large-scale cross-strata formed by successive climbing of eolian dunes, without interdune and/or fluvial accumulation (dry eolian system). The contact between the Guará and the Botucatu formations is delineated by a basin-wide deflation surface (supersurface). The abrupt change in the depositional conditions that took place across this supersurface suggests a major climate change, from semi-arid (Upper Jurassic) to hyper-arid (Lower Cretaceous) conditions. A rearrangement of the Paraná Basin depocenters is contemporaneous to this climate change, which seems to have changed from a more restrict accumulation area in the Guará Formation to a wider sedimentary context in the Botucatu Formation.  相似文献   
45.
Paleontological study of Upper Jurassic and Lower Cretaceous sediments recovered by boreholes in the Agan-Vakh and Nadym-Vengapur interfluves clarified environments of their deposition. As is shown, influx of siliciclastic material to central areas of the West Siberian sea basin varied through time. Taxonomic composition and ecological structure of nektonic and benthic fossil assemblages are analyzed and considered in terms of environmental factors such as hydrodynamics, aeration, temperature, and salinity of seawater.  相似文献   
46.
New data on Sr-and C-isotopic systematics of carbonate rocks from the Upper Riphean stratotype (Karatau Group of the southern Urals) are obtained for several southwestern sections of the Bashkirian meganticlinorium, which have not been studied before. The results obtained supplement the Sr-and C-isotopic information for the group upper horizons thus detailing chemostratigraphic characterization of the entire succession. Limestone and dolostone samples used to analyze the Sr isotope composition satisfy strict geochemical criteria of the isotopic system retentivity and have been subjected to preliminary treatment in ammonium acetate to remove secondary carbonate phases. Data on 255 samples of carbonate rocks (171 studied for the first time) show that δ13C value varies in the Karatau Group succession from ?2.8 to +5.9 ‰ V-PDB with several in-phase excursions from the general trend in all the sections studied in the area 90 × 130 km. The δ13C variation trend demarcates several levels in the carbonate succession of the Karatau Group suitable for objectives of regional stratigraphy and for C-isotope chemostratigraphic subdivision of the Upper Riphean. The results of Sr isotopic analysis of 121 samples (51 unstudied before) from the Karatau Group imply that rocks in its lower part (the Katav Formation and basal horizon of the Inzer Formation) experienced considerable secondary alterations, while limestones and dolostones of the overlying interval of the group are frequently unaltered. In the “best” samples satisfying geochemical criteria of the isotopic system retentivity, the 87Sr/86Sr initial ratio increases from 0.70521–0.70532 in the lower Inzer deposits to 0.70611 in the upper Min’yar carbonates, decreasing to <0.70600 near the top of the latter. Above the regional hiatus separating the Min’yar and Uk formation, this ratio grows from 0.70533 to 0.70605–0.70609 in the limestone succession of the last formation.  相似文献   
47.
ABSTRACT. Mountain landscapes show rapid evolution, especially at high altitudes, in response to current climate changes. In addition, the greater number of routes and trails made available and the increase in tourism have caused some impacts on mountain areas. Gradual soil erosion has been observed along some hiking trails, with the latter tending to deepen, and with stronger erosion where the trail cuts the slope. Where trails cross forested areas, trees can suffer root damage from foot trampling as roots become exposed. A dendrogeomorphological study was conducted on trees along two hiking trails in upper Valtellina (Italian Alps). On the first trail, in Valle dei Forni, European larches and stone pines, mostly with exposed roots, were sampled. A mean erosion rate of 2.7 mm/a, related to deepening of the footpath, was obtained, and various degrees of root growth disturbance along the trail were observed. In particular, the growth of many sampled roots shows an increase in ring width corresponding with the moment when root exposure occurred, followed, after 3–5 years, by rapid growth suppression. The exposure of many roots has taken place since the 1980s. No significant variations in stem growth were observed, even when there were exposed and damaged roots. Along the second trail, in Valle Alpisella, exposed roots of mountain pines were analysed. A mean erosion rate of 3.2–3.7 mm/a, related to the escarpments bordering the footpath, was obtained, while no significant changes were detected in root growth.  相似文献   
48.
Gzhelian deposits established in Iran for the first time are described. They rest with a considerable hiatus on the Moscovian deposits constituting, along with Asselian strata, an integral carbonate succession of the Zaladu Formation in eastern Iran. The Zaladu Formation is correlative with the Vazhnan Formation of the Abadeh region (central Iran) and the Dorud Formation of the Elburz (Alborz) Mountains. An assemblage of Gzhelian fusulinids from the studied section is well comparable with the assemblage of the Ultradaixina bosbytauensis Zone distinguished in the uppermost Gzhelian of the Darvaz, Fergana, the Southern Urals, Donetsk Basin, and Carnic Alps. Two new species of the genus Schellwienia (Sch. anarakensis and Sch. stocklini) are described. Gzhelian and Asselian fusulinids found in the section are figured in two paleontological plates.  相似文献   
49.
1IntroductionThe northern segment of the South LancangjiangBelt refers to the terrain about200km east of theYunxian-Lingcang granite in the South LancangjiangBelt(Fig.1).During the seventh Five-Year Plan peri-od,Mo Xuanxue et al.(1993)undertook the resear…  相似文献   
50.
笔者在《岔路口》等四幅1:25万区域地质调查工作中,在红山湖一带从前人所划的石炭系地层中解体出一套二叠系地层,并对其进行了详细的岩石地层、生物地层和层序地层研究,拟新命名为红山湖组,时代为中二叠世。该地层为甜水海微陆块上稳定型的碳酸盐岩建造,与陆块南北两侧二叠系特征截然不同。该套地层的发现填补了微陆块上二叠系地层的空白,对古特提斯多岛洋研究具有重要意义。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号