首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1891篇
  免费   332篇
  国内免费   294篇
测绘学   163篇
大气科学   64篇
地球物理   201篇
地质学   1335篇
海洋学   77篇
天文学   224篇
综合类   188篇
自然地理   265篇
  2024年   8篇
  2023年   29篇
  2022年   49篇
  2021年   51篇
  2020年   53篇
  2019年   72篇
  2018年   50篇
  2017年   65篇
  2016年   71篇
  2015年   66篇
  2014年   155篇
  2013年   163篇
  2012年   99篇
  2011年   164篇
  2010年   133篇
  2009年   132篇
  2008年   120篇
  2007年   126篇
  2006年   99篇
  2005年   98篇
  2004年   72篇
  2003年   80篇
  2002年   62篇
  2001年   71篇
  2000年   54篇
  1999年   52篇
  1998年   68篇
  1997年   52篇
  1996年   42篇
  1995年   42篇
  1994年   22篇
  1993年   19篇
  1992年   14篇
  1991年   11篇
  1990年   11篇
  1989年   5篇
  1988年   9篇
  1987年   5篇
  1986年   3篇
  1985年   3篇
  1984年   6篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
  1979年   2篇
  1977年   1篇
  1975年   1篇
  1954年   1篇
  1882年   1篇
  1875年   1篇
排序方式: 共有2517条查询结果,搜索用时 296 毫秒
261.
The presence of pingos on Mars has been hypothesized since the period of the Viking mission. In fact, a diverse range of pingo-like features has been found at various martian sites including Elysium, Chryse and Utopia Planitiae in the northern lowlands. Due to the morphology and the geological setting, some of those features were interpreted in different ways, creating some controversies, as happened in Athabasca Valles. This reflects the complexity of interpreting these features by remote sensing and multiple plausible interpretations of the same feature. With the objective of identifying new possible pingos or rootless cones on Mars, we selected a study area in Utopia Planitia (10-55° N, 210-260° W) where the presence of both features is possible due to its geological history (volcanic and hydrological). We analyzed more than 2100 Mars Orbiter Camera (MOC)-narrow angle images in addition to Viking, Thermal Emission Imaging System (THEMIS), and High Resolution Stereo Camera (HRSC) images, together with Mars Orbiter Laser Altimeter (MOLA)-derived Digital Elevation Models (DEMs) with a Geographic Information System (GIS). We found in 94 MOC-narrow angle images dome, cone, and ring-shaped features. We analyzed them from morphological and morphometrical points of view in order to compare them with relevant features on Mars and Earth. We tested different possible origins for those features following the approach of multiple working hypotheses. We conclude that the dome, cone, and ring-shaped features could be pingos, which is in agreement with their geological settings. Regarding the driving heat source for the formation of the purported pingos, we propose the existence of a heat source, possibly a magma chamber, underneath the surface of the Utopia basin. Together with possible climatic shifts, the past activities of the heat source may have caused melting of ground ice. The pingo growth due to freezing of the water would have occurred during the following cold climatic conditions.  相似文献   
262.
J.S. Levy  J.W. Head  J.L. Dickson 《Icarus》2009,201(1):113-126
We describe the morphology and spatial relationships between composite-wedge polygons and Mars-like gullies (consisting of alcoves, channels, and fans) in the hyper-arid Antarctic Dry Valleys (ADV), as a basis for understanding possible origins for martian gullies that also occur in association with polygonally patterned ground. Gullies in the ADV arise in part from the melting of atmospherically-derived, wind-blown snow trapped in polygon troughs. Snowmelt that yields surface flow can occur during peak southern hemisphere summer daytime insolation conditions. Ice-cemented permafrost provides an impermeable substrate over which meltwater flows, but does not significantly contribute to meltwater generation. Relationships between contraction crack polygons and sedimentary fans at the distal ends of gullies show deposition of fan material in polygon troughs, and dissection of fans by expanding polygon troughs. These observations suggest the continuous presence of meters-thick ice-cemented permafrost beneath ADV gullies. We document strong morphological similarities between gullies and polygons on Mars and those observed in the ADV Inland Mixed microclimate zone. On the basis of this morphological comparison, we propose an analogous, top-down melting model for the initiation and evolution of martian gullies that occur on polygonally-patterned, mantled surfaces.  相似文献   
263.
We have found sorted stone circles and polygons near the equator of Mars, using new 25 cm/pixel NASA HiRISE (High Resolution Imaging Science Experiment) images. The sorted circles occur in geologically recent catastrophic flood deposits in the equatorial Elysium Planitia region, and are diagnostic of periglacial processes: sorted polygons do not form from volcanic activity, as has been suggested for non-sorted polygons in this region. These landforms indicate that (i) a long-lived, geologically recent, active cryoturbation layer of ground ice was present in the regolith, (ii) there was some degree of freeze-thaw, and thus (iii) there were sustained period(s), likely within the last 10 Ma, in which the martian climate was 40 to 60 K warmer than current models predict.  相似文献   
264.
Richard Ulrich 《Icarus》2009,201(1):127-134
Diffusion advection is an effect in diffusive multicomponent mass transfer that occurs when the flux vectors of the individual components do not add up to zero. This can be a significant effect for the mass transfer of water vapor from subsurface ice or liquid reservoirs through porous regolith at martian temperatures and pressures. Ignoring diffusion advection and using Fick's law alone to calculate the flux under these conditions will result in an erroneously small value while using a measured flux to calculate a diffusivity will result in an erroneously high value. The inaccuracy in both cases increases with temperature. The literature contains several examples of erroneous treatment of this effect. The correct approach is well-known from other applications of mass transfer and takes diffusion advection into account in the appropriate amount regardless of the temperature and pressure and reduces to the simple Fick's law when conditions warrant. In this way, there is no need to decide under what conditions diffusion advection is or is not important. It can be used in the transition region to pure Knudsen diffusion in a fashion similar to that used with the more limited Fickian approach.  相似文献   
265.
In this study, we examine the lunar mare dome Mee 1 situated near the craters Mee H and Drebbel F in a region showing evidence of ancient (pre-Orientale) mare volcanism and cryptomare deposits. Regional stratigraphic relations indicate that Mee 1 was formed prior to the Orientale impact at the beginning of the Imbrian period. Based on a combined photoclinometry and shape from shading technique applied to telescopic CCD images of the dome acquired under oblique illumination, we determined a diameter of Mee 1 of 25 km, a height of 250 m, a flank slope of 1.15°, and a volume of . Based on rheologic modelling of the dome and a viscoelastic model of the feeder dike, we obtained a magma viscosity of , an effusion rate of , a duration of the effusion process of 1.6 years, a magma rise speed of , a width of the feeder dike of 32 m, and a horizontal dike length of 144 km. A comparison of Mee 1 with domes with similar morphometric properties, which are located near Milichius and inside the crater Petavius, reveals strong similarities with respect to the viscosity of the dome-forming magma and the feeder dike geometry, while the effusion rate and magma rise speed of Mee 1 are somewhat higher. The pronounced morphometric differences between Mee 1 and a smaller dome situated close to the crater Doppelmayer and characterised by a similar magma viscosity suggest that the growth of that dome was limited by exhaustion of the magma reservoir, while Mee 1 and the other larger domes display morphometric properties presumably coming closer to the cooling limit. The comparison of the ancient dome Mee 1 with the younger (Eratosthenian) edifices near Milichius and Doppelmayer suggests that the conditions in the upper mantle and the crust favoured high eruption volumes, effusion rates, and magma rise speeds, implying the occurrence of large magma reservoirs preventing the limitation of dome growth by magma exhaustion. On the other hand, we observe similar general morphometric, rheologic, and feeder dike characteristics and, thus, conclude that the formation conditions of lunar mare domes did not change fundamentally during the Imbrian period.  相似文献   
266.
Recent geological observations in the northern mid-latitudes of Mars show evidence for past glacial activity during the late Amazonian, similar to the integrated glacial landsystems in the Dry Valleys of Antarctica. The large accumulation of ice (many hundreds of meters) required to create the observed glacial deposits points to significant atmospheric precipitation, snow and ice accumulation, and glacial flow. In order to understand the climate scenario required for these conditions, we used the LMD (Laboratoire de Météorologie Dynamique) Mars GCM (General Circulation Model), which is able to reproduce the present-day water cycle, and to predict past deposition of ice consistent with geological observations in many cases. Prior to this analysis, however, significant mid-latitude glaciation had not been simulated by the model, run under a range of parameters.In this analysis, we studied the response of the GCM to a wider range of orbital configurations and water ice reservoirs, and show that during periods of moderate obliquity (? = 25-35°) and high dust opacity (τdust = 1.5-2.5), broad-scale glaciation in the northern mid-latitudes occurs if water ice deposited on the flanks of the Tharsis volcanoes at higher obliquity is available for sublimation. We find that high dust contents of the atmosphere increase its water vapor holding capacity, thereby moving the saturation region to the northern mid-latitudes. Precipitation events are then controlled by topographic forcing of stationary planetary waves and transient weather systems, producing surface ice distribution and amounts that are consistent with the geological record. Ice accumulation rates of ∼10 mm yr−1 lead to the formation of a 500-1000 m thick regional ice sheet that will produce glacial flow patterns consistent with the geological observations.  相似文献   
267.
This study examines a set of lunar domes with very low flank slopes which differ in several respects from the frequently occurring lunar effusive domes. Some of these domes are exceptionally large, and most of them are associated with faults or linear rilles of presumably tensional origin. Accordingly, they might be interpreted as surface manifestations of laccolithic intrusions formed by flexure-induced vertical uplift of the lunar crust (or, alternatively, as low effusive edifices due to lava mantling of highland terrain, or kipukas, or structural features). All of them are situated near the borders of mare regions or in regions characterised by extensive effusive volcanic activity. Clementine multispectral UVVIS imagery indicates that they do not preferentially occur in specific types of mare basalt. Our determination of their morphometric properties, involving a combined photoclinometry and shape from shading technique applied to telescopic CCD images acquired at oblique illumination, reveals large dome diameters between 10 and more than 30 km, flank slopes below 0.9°, and volumes ranging from 0.5 to 50 km3. We establish three morphometric classes. The first class, In1, comprises large domes with diameters above 25 km and flank slopes of 0.2°-0.6°, class In2 is made up by smaller and slightly steeper domes with diameters of 10-15 km and flank slopes between 0.4° and 0.9°, and domes of class In3 have diameters of 13-20 km and flank slopes below 0.3°. While the morphometric properties of several candidate intrusive domes overlap with those of some classes of effusive domes, we show that a possible distinction criterion are the characteristic elongated outlines of the candidate intrusive domes. We examine how they differ from typical effusive domes of classes 5 and 6 defined by Head and Gifford [Head, J.W., Gifford, A., 1980. Lunar mare domes: classification and modes of origin. Moon Planets 22, 235-257], and show that they are likely no highland kipukas due to the absence of spectral contrast to their surrounding. These considerations serve as a motivation for an analysis of the candidate intrusive domes in terms of the laccolith model by Kerr and Pollard [Kerr, A.D., Pollard, D.D., 1998. Toward more realistic formulations for the analysis of laccoliths. J. Struct. Geol. 20(12), 1783-1793], to estimate the geophysical parameters, especially the intrusion depth and the magma pressure, which would result from the observed morphometric properties. Accordingly, domes of class In1 are characterised by intrusion depths of 2.3-3.5 km and magma pressures between 18 and 29 MPa. For the smaller and steeper domes of class In2 the magma intruded to shallow depths between 0.4 and 1.0 km while the inferred magma pressures range from 3 to 8 MPa. Class In3 domes are similar to those of class In1 with intrusion depths of 1.8-2.7 km and magma pressures of 15-23 MPa. As an extraordinary feature, we describe in some detail the concentric crater Archytas G associated with the intrusive dome Ar1 and discuss possible modes of origin. In comparison to the candidate intrusive domes, terrestrial laccoliths tend to be smaller, but it remains unclear if this observation is merely a selection effect due to the limited resolution of our telescopic CCD images. An elongated outline is common to many terrestrial laccoliths and the putative lunar laccoliths, while the thickness values measured for terrestrial laccoliths are typically higher than those inferred for lunar laccoliths, but the typical intrusion depths are comparable.  相似文献   
268.
There are wide areas of granitic rocks in the Japanese orogenic belt. These granitic bodies inevitably contain fracture and fault systems associated with alteration zones. However, relatively little attention has been given to the possible influence of such widely distributed alteration zones on the migration of radionuclides from any radioactive waste repository that might in future be sited within granitic rock. In particular, the influences of alteration products and micro-fractures, due to chemical sorption and/or physical retardation require further consideration. In order to understand the retardation capacity of the altered deep granitic rocks, detailed geometrical characterization of pores, geochemical analysis, and batch sorption and flow-through experiments have been carried out. Those results show that the altered granite has a large volume of accessible pores, particularly in potassium-feldspar grains, which would influence nuclide retardation more than the accessible porosity in other minerals present, such as biotite. The distribution coefficients, Kd estimated from batch sorption tests and flow-through experiments suggest that altered granite has a high capability to retard the migration of nuclides. The retardation would probably be due to sorption on altered minerals such as sericite and iron hydroxides formed along grain boundaries and in pores created by dissolution, in addition to sorption on primary sorptive minerals. These results provide confidence that even altered and fractured parts of any granitic rock that might be encountered in a site for the disposal of high level radioactive waste may still retard radionuclide migration and thereby help the geosphere to function as a barrier.  相似文献   
269.
A fractal study method of the number of geological mass fractures is introduced in detail in this paper. Three main aspects of the problem were studied: (1) The random distribution of fractures in a geological mass was in good agreement with the fractal law. The size scale of the studied geological mass ranged from 2400 m to 1 mm for the length of each side, and the geological mass samples were taken from 13 coal areas in China. (2) The geological mass fractures were evidently directional and anisotropic, having originated from tectonic movement. Observation and statistics for the data from the Xuangang, Fenxi and Dongshan coal areas in Shanxi, China, demonstrated that the fracture distribution of each group, classified by the strike of the strata, still follow the fractal law, even though the fractal dimension varies to a certain extent with different strikes. (3) The sedimentary strata containing the coal seams, as a geological mass, underwent almost similar tectonic movements in their geological history. The mechanical experiments on geological mass samples from Fenxi and Jiexiu in Shanxi demonstrated that the fractal dimension of the number of fractures in the same strata is in good power function with the product of strength and elastic modulus. The larger the product of the strength of the elastic modulus is, the larger is the fractal dimension, and vice versa.  相似文献   
270.
The idea of climate has both statistical and social foundations. Both of these dimensions of climate change over time: climate, as defined by meteorological statistics, changes for both natural and anthropogenic reasons; and our expectations of future climate also change, as cultures, societies and knowledge evolves. This paper explores the interactions between these different expressions of climate change by focusing on the idea of ‘normal’ climates defined by statistics. We show how this idea came into being in meteorological circles and then review how this idea of climatic normality gets entangled with cultural and psychological processes. Using data from historical and predicted climates in the UK, we illustrate the significance of choosing different baseline ‘normals’ for retrospective and prospective interpretations of climate change. Since the choice of these statistical ‘normals’ reflects cultural, political and psychological preferences and practices as much as scientific ones, we argue that expectations of the climatic future are influenced by social as well as statistical norms. Seeing climate as co-constructed between the psycho-cultural constraints of society and the physical constraints of the material world offers a different way of thinking about the instabilities of climate and the ways we adapt to them.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号