首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2691篇
  免费   791篇
  国内免费   3306篇
大气科学   15篇
地球物理   257篇
地质学   6315篇
海洋学   33篇
天文学   13篇
综合类   82篇
自然地理   73篇
  2024年   42篇
  2023年   129篇
  2022年   214篇
  2021年   299篇
  2020年   301篇
  2019年   403篇
  2018年   406篇
  2017年   401篇
  2016年   421篇
  2015年   411篇
  2014年   434篇
  2013年   451篇
  2012年   525篇
  2011年   323篇
  2010年   289篇
  2009年   237篇
  2008年   222篇
  2007年   225篇
  2006年   216篇
  2005年   170篇
  2004年   142篇
  2003年   90篇
  2002年   59篇
  2001年   59篇
  2000年   52篇
  1999年   49篇
  1998年   29篇
  1997年   51篇
  1996年   28篇
  1995年   26篇
  1994年   31篇
  1993年   10篇
  1992年   15篇
  1991年   7篇
  1990年   2篇
  1989年   8篇
  1988年   4篇
  1987年   4篇
  1986年   1篇
  1985年   2篇
排序方式: 共有6788条查询结果,搜索用时 31 毫秒
71.
The oldest known bona fide succession of clastic metasediments occurs in the Isua Greenstone Belt, SW Greenland and consists of a variety of mica schists and rare metaconglomerates. The metasediments are in direct contact with a felsic metavolcanic lithology that has previously been dated to 3.71 Ga. Based on trace element geochemical data for > 30 metasediments, we selected the six samples with highest Zr concentrations for zircon extraction. These samples all yielded very few or no zircon. Those extracted from mica schists yielded ion probe U/Pb ages between 3.70 and 3.71 Ga. One metaconglomerate sample yielded just a single zircon of 3.74 Ga age.The mica schist hosted zircons have U/Pb ages, Th / U ratios, REE patterns and Eu anomalies indistinguishable from zircon in the adjacent 3.71 Ga felsic metavolcanic unit. Trace element modelling requires the bulk of material in the metasediments to be derived from variably weathered mafic lithologies but some metasediments contain substantial contribution from more evolved source lithologies. The paucity of zircon in the mica schists is thus explained by incorporation of material from largely zircon-free volcanic lithologies. The absence of older zircon in the mica schists and the preponderance of mafic source material imply intense, mainly basaltic resurfacing of the early Earth. The implications of this process are discussed.Thermal considerations suggest that horizontal growth of Hadean crust by addition of mafic-ultramafic lavas must have triggered self-reorganisation of the protocrust by remelting. Reworking of Hadean crust may have been aided by burial of hydrated (weathered) metabasalt due to semi-continuous addition of new voluminous basalt outpourings. This process causes a bias towards eruption of Zr-saturated partial melts at the surface with O-isotope compositions potentially different from the mantle. The oldest zircons hosted in sediments would have been buried to substantial depth or formed in plutons that crystallised at some depth, from which it took hundreds of millions of years for them to be exhumed and incorporated into much younger sediments.  相似文献   
72.
Our two newly obtained high-quality 40Ar/39Ar ages suggest that the high-K volcanic rocks of the Lawuxiang Formation in the Mangkang basin, Tibet were formed at 33.5±0.2 Ma. The tracing of elemental and Pb-Sr-Nd isotopic geochemistry indicates that they were derived from an EM2 enriched mantle in continental subduction caused by transpression. Their evidently negative anomalies in HFSEs such as Nb and Ta make clear that there is an input of continental material into the mantle source. The high-K rocks at 33.5±0.2 Ma in the Mangkang basin may temporally, spatially and compositionally compare with the early one of two-pulse high-K rocks in eastern Tibet distinguished by Wang J. H. et al., implying that they were formed in the same tectonic setting.  相似文献   
73.
新疆阿尔泰造山带构造作用的锆石裂变径迹分析   总被引:1,自引:0,他引:1  
在新疆阿尔泰造山带所获得的19个锆石裂变径迹年龄变化于155-243Ma之间,明显地分为2组,分别对应于2个构造活动期,早期为155-189Ma,晚期为189-243Ma。这与磷灰石裂变径迹年龄反映的62-100Ma和100-160Ma两个构造期完全一致。早期和晚期构造活动期持续的时间分别为54-60Ma和34-38Ma,而这两个构造期之间的间隔时间,则从早到晚由83-89Ma变为89-93Ma。同时,锆石裂变径迹年龄与距特斯巴汗断裂和巴寨断裂的距离有关,反映这两条断裂带对区域构造演化的控制作用。  相似文献   
74.
Olav Eklund  Alexey Shebanov 《Lithos》2005,80(1-4):229-247
The Åva ring complex is one of four Paleoproterozoic postcollisional shoshonitic ring complexes in southwestern Finland. It is composed of ring dykes of K-feldspar megacryst-bearing granite, mingled in places with a shoshonitic monzonite, and lamprophyre dykes crosscutting all the rocks in a radial pattern. A survey was undertaken to trace the magma chamber beneath the ring complex to date it and measure some intensive parameters to clarify the crystallisation conditions at depth before the granite was emplaced in the upper crust. Mineral separates were extracted from the core zones of K-feldspar megacrysts in the granite, heavy mineral fractions (including zircons) from these separates were used for P-T assessment and age determinations, and the results were compared to data obtained from bulk rock samples. It appears that magma differentiation took place in a midcrustal magma chamber (at 4 to 7 kbar) possibly 30 Ma before the emplacement of the ring complex in the upper crust (deep assemblage 1790 Ma, shallow assemblage 1760 Ma). Relatively high activity of the alkalies and a low oxygen fugacity characterised the midcrustal chamber. The juvenile Svecofennian crust was invaded by shoshonitic magmas from an enriched lithospheric mantle over a long period of time. Some of these magmas were stored and differentiated in the middle crust before transportation to the upper crust. The results also show that coarse-grained granites may provide evidence for several magmatic evolutionary episodes, e.g., differentiation and crystallisation in different environments prior to final emplacement.  相似文献   
75.
An interpretation and catalogue of paleoseismicity in Sweden   总被引:1,自引:0,他引:1  
Paleoseismic data provide a long-term record of seismic activity to predict hazards for periods longer than one to a few centuries. In Sweden, the analysis reveals there was a drastic change in dominant seismic mode from a high to super-high deglacial mode to a low to moderately low mode in present and Late Holocene time. Paleoseismic criteria and characteristics include numerous different sources of information; viz. primary faults, bedrock deformation, sedimentary deformation, rock and sediment slides, liquefaction, sorting by shaking, tsunamis, differing geomorphic expressions, disordering and ordering of magnetic particles. By applying multiple criteria, it was possible to identify 44 paleoseismic events, including 23 events of estimated M 6–7, 12 events of M 7–8 and 6 events of M > 8. Varve-dating often allows a precision as to a single year, in one case even to the season of a year. The key for paleoseismic reconstruction and testing is the application of multiple criteria.  相似文献   
76.
77.
78.
79.
The partitioning of rare earth elements (REE) between zircon, garnet and silicate melt was determined using synthetic compositions designed to represent partial melts formed in the lower crust during anatexis. The experiments, performed using internally heated gas pressure vessels at 7 kbar and 900–1000 °C, represent equilibrium partitioning of the middle to heavy REE between zircon and garnet during high‐grade metamorphism in the mid to lower crust. The DREE (zircon/garnet) values show a clear partitioning signature close to unity from Gd to Lu. Because the light REE have low concentrations in both minerals, values are calculated from strain modelling of the middle to heavy REE experimental data; these results show that zircon is favoured over garnet by up to two orders of magnitude. The resulting general concave‐up shape to the partitioning pattern across the REE reflects the preferential incorporation of middle REE into garnet, with DGd (zircon/garnet) ranging from 0.7 to 1.1, DHo (zircon/garnet) from 0.4 to 0.7 and DLu (zircon/garnet) from 0.6 to 1.3. There is no significant temperature dependence in the zircon–garnet REE partitioning at 7 kbar and 900–1000 °C, suggesting that these values can be applied to the interpretation of zircon–garnet equilibrium and timing relationships in the ultrahigh‐T metamorphism of low‐Ca pelitic and aluminous granulites.  相似文献   
80.
Migmatites are predominant in the North Qinling (NQ) orogen, but their formation ages are poorly constrained. This paper presents a combined study of cathodoluminescence imaging, U–Pb age, trace element and Hf isotopes of zircon in migmatites from the NQ unit. In the migmatites, most zircon grains occur as new, homogeneous crystals, while some are present as overgrowth rims around inherited cores. Morphological and trace element features suggest that the zircon crystals are metamorphic and formed during partial melting. The inherited cores have oscillatory zoning and yield U–Pb ages of c. 900 Ma, representing their protolith ages. The early Neoproterozoic protoliths probably formed in an active continental margin, being a response to the assembly of the supercontinent Rodinia. The migmatite zircon yields Hf model ages of 1911 ± 20 to 990 ± 22 Ma, indicating that the protoliths were derived from reworking of Palaeoproterozoic to Neoproterozoic crustal materials. The anatexis zircon yields formation ages ranging from 455 ± 5 to 420 ± 4 Ma, with a peak at c. 435 Ma. Combined with previous results, we suggest that the migmatization of the NQ terrane occurred at c. 455–400 Ma. The migmatization was c. 50 Ma later than the c. 490 Ma ultra‐high‐P (UHP) metamorphism, indicating that they occurred in two independent tectonic events. By contrast, the migmatization was coeval with the granulite facies metamorphism and the granitic magmatism in the NQ unit, which collectively argue for their formation due to the northward subduction of the Shangdan Ocean. UHP rocks were distributed mainly along the northern margin and occasionally in the inner part of the NQ unit, indicating that they were exhumed along the northern edge and detached from the basement by the subsequent migmatization process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号