首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   5篇
  国内免费   3篇
地球物理   2篇
地质学   81篇
海洋学   4篇
  2023年   1篇
  2020年   3篇
  2019年   2篇
  2018年   1篇
  2017年   8篇
  2016年   4篇
  2015年   6篇
  2013年   5篇
  2012年   1篇
  2011年   4篇
  2010年   3篇
  2009年   4篇
  2008年   6篇
  2007年   5篇
  2006年   2篇
  2005年   4篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1996年   1篇
  1993年   2篇
  1990年   1篇
  1987年   1篇
  1984年   4篇
  1983年   3篇
  1982年   3篇
  1980年   3篇
排序方式: 共有87条查询结果,搜索用时 15 毫秒
11.
 The Errachidia basin is composed of three superposed aquifers (Senonian, Turonian limestones and Infracenomanian). The Liassic limestone of the upper Atlas borders the northern part of the basin. The piezometric map of the Turonian aquifer displays a north-south flow, with an inflow area from the Atlas. This recharge hypothesis is demontrated by a discriminant analysis performed on chemical data: the majority of the spots are of sodium choride and hydrogenocarbonate types, while several boreholes are assigned to a calcium hydrogenocarbonate type Jurassic component. 18O measurements, using the Atlasic gradient δ18O=–4.18–0.0027 x elevation to estimate the recharge areas, confirm that the recharge area is the basin itself (<1100 m) on the Turonian outcrops, while in the confined part, the Turonian is recharged higher than 1400 m (corresponding to the Atlas). This contribution ranges from 56 to 85%, according to the situation versus the piezometric inflow area. The remainder represents infiltration and vertical leakage from the Senonian layers.  相似文献   
12.
A priori, the recorded relative sea-level changes during the Cretaceous must be the combined effect of tectono-eustasy, geoidal-eustasy and various crustal level changes. To this we must add the human factor of differences and errors in interpretations.A posteriori, it is claimed that geoidal-eustasy dominated during the Hauterivian, Barremian, Turonian, Santonian and Maastrichtian, that tectono-eustasy dominated during the Albian, Cenomanian, Campanian and at the Maastrichtian/Danian boundary, and that local influences of sea-floor spreading are identified from the Albian/Cenomanian boundary onwards. To this we must add the local differential crustal movements modulating the global and regional ocean level changes. Geoidal-eustasy is mainly expressed as a latitudinal differentiation of the sea-level with out-of-phase changes between the hemispheres or the both high latitude regions. Furthermore, sedimentological records seem to record short-period geoidal-eustatic cycles.  相似文献   
13.
Lower to Middle Turonian deposits within the Bohemian Cretaceous Basin (Central Europe) consist of coarse‐grained deltaic sandstones passing distally into fine‐grained offshore sediments. Dune‐scale cross‐beds superimposed on delta‐front clinoforms indicate a vigorous basinal palaeocirculation capable of transporting coarse‐grained sand across the entire depth range of the clinoforms (ca 35 m). Bi‐directional, alongshore‐oriented, trough cross‐set axes, silt drapes and reactivation surfaces indicate tidal activity. However, the Bohemian Cretaceous Basin at this time was over a thousand kilometres from the shelf break and separated from the open ocean by a series of small islands. The presence of tidally‐influenced deposits in a setting where co‐oscillating tides are likely to have been damped down by seabed friction and blocked by emergent land masses is problematic. The Imperial College Ocean Model, a fully hydrodynamic, unstructured mesh finite element model, is used to test the hypothesis that tidal circulation in this isolated region was capable of generating the observed grain‐size distributions, bedform types and palaeocurrent orientations. The model is first validated for the prediction of bed shear stress magnitudes and sediment transport pathways against the present‐day North European shelf seas that surround the British Isles. The model predicts a microtidal to mesotidal regime for the Bohemian Cretaceous Basin across a range of sensitivity tests with elevated tidal ranges in local embayments. Funnelling associated with straits increases tidal current velocities, generating bed shear stresses that were capable of forming the sedimentary structures observed in the field. The model also predicts instantaneous bi‐directional currents with orientations comparable with those measured in the field. Overall, the Imperial College Ocean Model predicts a vigorous tide‐driven palaeocirculation within the Bohemian Cretaceous Basin that would indisputably have influenced sediment dispersal and facies distributions. Palaeocurrent vectors and sediment transport pathways however vary markedly in the different sensitivity tests. Accurate modelling of these parameters, in this instance, requires greater palaeogeographic certainty than can be extracted from the available rock record.  相似文献   
14.
We describe herein a new genus and species of Sycoracinae (Xenosycorax engeli). This new taxon is characterized, described, illustrated and its taxonomic position is discussed. This discovery is very interesting for the understanding of the evolution of this group.  相似文献   
15.
The Cenomanian–Turonian Boundary Event (CTBE) event is not associated with a transgression on the southern margin of the Subalpine Basin, but with a steady shallowing-up trend beginning in the lower half of the δ13C positive shift. The SW–NE Rouaine Fault had a complex role, first in isolating a black shale basin to the west and a large, deep submarine plateau devoid of black shale to the east, then by a strike-slip movement that induced a forced progradation to the north of the southern platform in the eastern compartment. This compressive tectonic reactivation of the southern margin began around the deposition of the local equivalent of the Plenus bed of boreal basins, as shown by correlation supported by both isotope and palaeontological data. Other local data are pieced together to suggest that the whole of SE France underwent a short-lived transpressive tectonic pulse around the Cenomanian–Turonian boundary, probably connected with the early compressive movement of Africa vs. Europe. On a larger scale, other published data suggest that this pulse could be a global one. It is coeval with renewed thrust loading, volcanism and transgression in the North-American Western Interior, local emergences during the event along the eastern Atlantic margin, suggesting a slight tendency to inversion of the margin, and a tilting to the east of the North-Africa plate that could explain the large transgression recorded from Morocco to Tunisia on the Saharan Craton.New isotope and palaeontological (coiling ratio of Muricohedbergella delrioensis) data from SE France suggest that two coolings of suprabasinal importance occurred just before and during the build-up of the d13C shift, including the boreal “Plenus Marls“, especially its middle limestone bed and its SE France equivalent.Regarding the extinction of the genus Thalmaninella and Rotalipora and during the event, neither anoxia nor climate changes can fully explain the palaeontological crisis, given that Rotalipora cushmani crosses the first phase of anoxia without harm, as well as the two coolings, not only in SE France but on a large scale, as shown by the correlation of the published data. This extinction needs alternative explanations as we challenge both anoxia and climate as major causes.  相似文献   
16.
Two shallow water late Cenomanian to early Turonian sequences of NE Egypt have been investigated to evaluate the response to OAE2. Age control based on calcareous nannoplankton, planktic foraminifera and ammonite biostratigraphies integrated with δ13C stratigraphy is relatively good despite low diversity and sporadic occurrences. Planktic and benthic foraminiferal faunas are characterized by dysoxic, brackish and mesotrophic conditions, as indicated by low species diversity, low oxygen and low salinity tolerant planktic and benthic species, along with oyster-rich limestone layers. In these subtidal to inner neritic environments the OAE2 δ13C excursion appears comparable and coeval to that of open marine environments. However, in contrast to open marine environments where anoxic conditions begin after the first δ13C peak and end at or near the Cenomanian–Turonian boundary, in shallow coastal environments anoxic conditions do not appear until the early Turonian. This delay in anoxia appears to be related to the sea-level transgression that reached its maximum in the early Turonian, as observed in shallow water sections from Egypt to Morocco.  相似文献   
17.
The upper Cenomanian–lower Turonian paleoenvironments of the Preafrican Trough carbonate platform is characterized by analyzing the structure of the ostracod assemblages and the information provided by other groups, and also by linking together the paleontological and geochemical data (detrital influx-redox-paleoproductivity proxies, δ13C curve). Two different domains (eastern and western) can be recognized on the platform during the late Cenomanian, before the onset of the OAE2. The western domain corresponds to a low-energy environment developed on a mid and/or outer ramp with hypoxic waters, low detrital influx and low paleoproductivity. The paleoecological assemblages show limited specific diversity but variable density. The ostracods are opportunistic and unspecialized (r strategists), being associated with Buliminidae, surface and intermediate-water planktonic foraminifera, and fishes. The eastern domain corresponds to an inner ramp and/or peritidal environment with oxic waters, low detrital influx and low paleoproductivity, developed in a higher energy environment with paleoecological assemblages showing high diversity but variable density. The ostracods are more specialized (K strategists), being represented by diverse and constant assemblages associated with diversified benthic foraminifera, calcareous sponges and echinoderms, as well as intermediate- and deep-water planktonic foraminifera. The onset of the OAE2 has no influence on the western ostracod assemblages, but leads to the decline of the ostracod fauna and the disappearance of the deep-water planktonic foraminifera in the eastern domain. During the early Turonian, after the OAE2, the platform becomes an outer ramp with increased paleoproductivity, but is associated with a decrease of taxonomic diversity in hypoxic waters. The ostracods are very sparse and unspecialized, associated with siliceous sponges, Buliminidae, surface-living planktonic foraminifera, fishes and pelagic crinoids. Marine paleobiogeographic communication is relatively easy across the carbonate platforms between the Preafrican Trough and other Moroccan regions, as well as between Morocco and different parts of the South Tethyan and East Atlantic margins belonging to the Cenomanian–Turonian South Tethyan Ostracod Province (STOP). Thirteen new species are described: Cytherella tazzouguertensis n. sp., Bairdiacypris chaabetensis n. sp., Bythocypris amelkisensis n. sp., Pontocypris tadighoustensis n. sp., Procytherura? elongatissima n. sp., Loxoconcha akrabouensis n. sp., Hemiparacytheridea sagittaemucronata n. sp., Rehacythereis errachidiaensis n. sp., Rehacythereis zizensis n. sp., Veenia (Nigeria) tardaensis n. sp., Veenia (Nigeria) mediacostarobusta n. sp., Xestoleberis? preafricanensis n. sp., and Xestoleberis circinatus n. sp.  相似文献   
18.
In this paper we describe previously unpublished trionychid turtle material, consisting of skull fragments, from the Late Cretaceous (late Turonian) Bissekty Formation of the Dzharakuduk locality in Uzbekistan. This material is assigned to two taxa: the skull-based Khunnuchelys kizylkumensis Brinkman et al. (1993, Can. J. Earth Sci. 30, 2214-2223) and Trionychini indet. Two specimens which cannot be confidently attributed to these two taxa are considered Trionychidae indet. In addition to these trionychid taxa known from skulls, the Dzharakuduk turtle assemblage includes at least two shell-based taxa, Aspideretoides cf. A. riabinini and “Trionyx” cf. “T.” kansaiensis. For this and other Late Cretaceous localities of Middle Asia and Kazakhstan, we suggest the probable skull-shell associations of Khunnuchelys spp. with “Trionyxkansaiensis-like forms and Trionychini indet. with Aspideretoides-like forms.  相似文献   
19.
西藏南部Cenomanian-Turonian缺氧事件:有机地球化学研究   总被引:14,自引:1,他引:13  
基于藏南中白垩统Cenomanian-Turonian缺氧事件沉积的有机地球化学分析,对黑色页岩的有机质输入及其沉积环境进行了系统研究,并探讨了特征生物标志化合物与缺氧事件之间的关系。研究表明,缺氧层内高含量有机碳的黑色页岩与灰绿色页岩、泥灰岩构成二级旋回地层;有机质的母质输入以海洋生物的菌藻类为主。生物标志物与缺氧事件对应研究表明,Pr/Ph在剖面上的相对含量是判别氧化还原的良好指标,胡萝卜烷含  相似文献   
20.
Well-preserved and rich nannofossil assemblages from Turonian-Coniacian (Upper Cretaceous) marlstone deposits of the Opole Trough in SW Poland have been analysed. Nannoplankton zones (and subzones) UC6 through UC10 were determined. Apparent discrepancies between the Turonian substage ages indicated by the nannofossil zones, which are based on correlations with the standard ammonite zones, and those based on inoceramids are revealed. This illustrates poor correlation between the inoceramid and ammonite events used to indicate the substage boundaries, rather than diachroneity in the nannofossil events.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号