首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   241篇
  免费   10篇
  国内免费   4篇
测绘学   5篇
大气科学   5篇
地球物理   84篇
地质学   94篇
海洋学   58篇
自然地理   9篇
  2022年   2篇
  2020年   1篇
  2019年   2篇
  2018年   4篇
  2017年   7篇
  2016年   4篇
  2015年   7篇
  2014年   4篇
  2013年   15篇
  2012年   3篇
  2011年   11篇
  2010年   8篇
  2009年   13篇
  2008年   31篇
  2007年   49篇
  2006年   29篇
  2005年   18篇
  2004年   1篇
  2003年   4篇
  2002年   5篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1996年   1篇
  1995年   12篇
  1993年   2篇
  1992年   1篇
  1991年   8篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
排序方式: 共有255条查询结果,搜索用时 968 毫秒
21.
Tsunamis can leave deposits on the land surface they inundate. The characteristics of tsunami deposits can be used to calculate tsunami run-up height and velocity. This paper presents a reconstruction of tsunami run-up from tsunami deposit characteristics in a simple mathematical model. The model is modified and applied to reconstruct tsunami run-ups at Ao Kheuy beach and Khuk Khak beach, Phangnga province, Thailand. The input parameters are grain-size and maximum run-up distance of the sediment. The reconstructed run-up heights are 4.16–4.91 m at Ao Kheuy beach and 5.43–9.46 m at Khuk Khak beach. The estimated run-up velocities (maximum velocity) at the still water level are 12.78–19.21 m/s. In the area located 70–140 m inland to the end of run-up inundation, estimated mean run-up velocities decrease from approximately 1.93 m/s to 0 m/s. Reasonably good agreements are found between reconstructed and observed run-up heights. The tsunami run-up height and velocity can be used for risk assessment and coastal development programs in the tsunami affected area. The results show that the area from 0 to 140 m inland was flooded by high velocity run-ups and those run-up energies were dissipated mainly in this area. The area should be designated as either an area where settlement is not permitted or an area where effective protection is provided, for example with flood barriers or forest.  相似文献   
22.
Tsunami is one of a few kinds of natural disasters that leave people some time for escape. This escape time, which is essentially the time for the giant wave to propagate from the epicentre to a coast, has to be estimated without delay upon the occurrence of the incident. With the advancement of water wave theories, much work has been done to model the propagation of tsunamis from deep oceans to shallow water. The authors argue that while much emphasis has been put on the expansion of the high-tech early warning system and the development of complicated tsunami models, a simple-to-use yet accurate predictive model is still wanting. This paper presents a handy linear wave model, which is capable of estimating the arrival time of a tsunami with very good accuracy, as has been verified by comparison with past incidents. With the availability of such a simple model, even local communities without access to a high-tech warning system can readily estimate the time left for emergency evacuation.  相似文献   
23.
Seismic parameters controlling far-field tsunami amplitudes: A review   总被引:3,自引:1,他引:3  
We present a review of the influence of various parameters of the sources of major oceanic earthquakes on the amplitude of tsunamis at transoceanic distances. We base our computations on the normal mode formalism, applied to realistic Earth models, but interpret our principal results in the simpler framework of Haskell theory in the case of a water layer over a Poisson half-space. Our results show that source depth and focal geometry play only a limited role in controlling the amplitude of the tsunami; their combined influence reaches at most 1 order of magnitude down to a depth of 150 km into the hard rock. More important are the effects of directivity due to rupture propagation along the fault, which for large earthquakes can result in a ten-fold decrease in tsunami amplitude by destructive interference, and the possibility of enhanced tsunami excitation in material with weaker elastic properties, such as sedimentary layers. Modelling of the so-called tsunami earthquakes suggests that an event for which 10% of the moment release takes place in sediments generates a tsunami 10 times larger than its seismic moment would suggest. We also investigate the properties of non-double couple sources and find that their relative excitation of tsunamis and Rayleigh waves is in general comparable to that of regular seismic sources. In particular, landslides involving weak sediments could result in very large tsunamis. Finally, we emphasize that the final amplitude at a receiving shore can be strongly affected by focusing and defocusing effects, due to variations in bathymetry along the path of the tsunami.  相似文献   
24.
A general approach for the estimation of tsunami height and hazard in the vicinity of active volcanoes has been developed. An empirical relationship has been developed to estimate the height of the tsunami generated for an eruption of a given size. This relationship can be used to estimate the tsunami hazard based on the frequency of eruptive activity of a particular volcano. This technique is then applied to the estimation of tsunami hazard from the eruption of the Augustine volcano in Alaska. Modification of this approach to account for a less than satisfactory data base and differing volcanic characteristics is also discussed with the case of the Augustine volcano as an example. This approach can be used elsewhere with only slight modifications and, for the first time, provides a technique to estimate tsunami hazard from volcanic activity, similar to a well-established approach for the estimation of tsunami hazard from earthquake activity.  相似文献   
25.
A field survey of the June 3, 1994 East Java earthquake tsunami was conducted within three weeks, and the distributions of the seismic intensities, tsunami heights, and human and house damages were surveyed. The seismic intensities on the south coasts of Java and Bali Islands were small for an earthquake with magnitudeM 7.6. The earthquake caused no land damage. About 40 minutes after the main shock, a huge tsunami attacked the coasts, several villages in East Java Province were damaged severely, and 223 persons perished. At Pancer Village about 70 percent of the houses were swept away and 121 persons were killed by the tsunami. The relationship between tsunami heights and distances from the source shows that the Hatori's tsunami magnitude wasm=3, which seems to be larger for the earthquake magnitude. But we should not consider this an extraordinary event because it was pointed out byHatori (1994) that the magnitudes of tsunamis in the Indonesia-Philippine region generally exceed 1–2 grade larger than those of other regions.  相似文献   
26.
Source models for the 1993 Hokkaido Nansei-Oki earthquake tsunami   总被引:1,自引:0,他引:1  
A source model for the 1993 Hokkaido Nansei-Oki tsunami must satisfy certain conditions. Such conditions are presented in this paper, and two methods are used to determine the best source model for this event. A trial-and-error method selects DCRC-17a as the best among 24 different models. This model has three fault planes dipping westward. To reproduce well the tide gauge records at two locations, an inversion analysis is used to modify the dislocation of DCRC-17a.  相似文献   
27.
The Hokkaido-Nansei-Oki earthquake (M w 7.7) of July 12, 1993, is one of the largest tsunamigenic events in the Sea of Japan. The tsunami magnitudeM t is determined to be 8.1 from the maximum amplitudes of the tsunami recorded on tide gauges. This value is larger thanM w by 0.4 units. It is suggested that the tsunami potential of the Nansei-Oki earthquake is large forM w . A number of tsunami runup data are accumulated for a total range of about 1000 km along the coast, and the data are averaged to obtain the local mean heightsH n for 23 segments in intervals of about 40 km each. The geographic variation ofH n is approximately explained in terms of the empirical relationship proposed byAbe (1989, 1993). The height prediction from the available earthquake magnitudes ranges from 5.0–8.4 m, which brackets the observed maximum ofH n , 7.7 m, at Okushiri Island.  相似文献   
28.
Far-field simulation of the 1946 Aleutian tsunami   总被引:1,自引:0,他引:1  
We present hydrodynamic far-field simulations of the Aleutian tsunami of 1946 April 1, using both a dislocation source representing a slow earthquake and a dipolar one modelling a large landslide. The earthquake source is derived from the recent seismological study by López and Okal, while the landslide source was previously used to explain the exceptional run-up at Scotch Cap in the near field. The simulations are compared to a field data set previously compiled from testimonies of elderly witnesses at 27 far-field locations principally in the Austral and Marquesas Islands, with additional sites at Pitcairn, Easter and Juan Fernández. We find that the data set is modelled satisfactorily by the dislocation source, while the landslide fails to match the measured amplitudes, and to give a proper rendition of the physical interaction of the wavefield with the shore, in particular at Nuku Hiva, Marquesas. The emerging picture is that the event involved both a very slow earthquake, responsible for the far-field tsunami, and a major landslide explaining the near-field run-up, but with a negligible contribution in the far field.  相似文献   
29.
Tsunami deposits are provisionally distinguished in the field on the basis of anomalous sand horizons, fining-up and fining-landward, coupled with organic-rich, fragmented `backwash' sediments. In this paper, micromorphological features of a sediment sequence previously interpreted as being of tsunami origin are described. These characteristics are shown to be consistent with the macro-scale features used elsewhere, but show additional details not seen in standard stratigraphies, including possible evidence for individual waves, possibly wave-magnitude progression, organic fragment alignment and intraclast microstructures. Although replication and more complete studies are needed, this analysis confirms the identification of a tsunami in Willapa Bay in ca.1700 AD, while demonstrating a widely applicable technique for confirming or refuting possible tsunami deposits.  相似文献   
30.
We develop stochastic approaches to determine the potential for tsunami generation from earthquakes by combining two interrelated time series, one for the earthquake events, and another for the tsunami events. Conditional probabilities for the occurrence of tsunamis as a function of time are calculated by assuming that the inter-arrival times of the past events are lognormally distributed and by taking into account the time of occurrence of the last event in the time series. An alternative approach is based on the total probabilitiy theorem. Then, the probability for the tsunami occurrence equals the product of the ratio, r (= tsunami generating earthquakes/total number of earthquakes) by the conditional probability for the occurrence of the next earthquake in the zone. The probabilities obtained by the total probability theorem are bounded upwards by the ratio r and, therefore, they are not comparable with the conditional probabilities. The two methods were successfully tested in three characteristic seismic zones of the Pacific Ocean: South America, Kuril-Kamchatka and Japan. For time intervals of about 20 years and over the probabilities exceed 0.50 in the three zones. It has been found that the results depend on the approach applied. In fact, the conditional probabilities of tsunami occurrence in Japan are slightly higher than in the South America region and in Kuril-Kamchatka they are clearly lower than in South America. Probabilities calculated by the total probability theorem are systematically higher in South America than in Japan while in Kuril-Kamchatka they are significantly lower than in Japan. The stochastic techniques tested in this paper are promising for the tsunami potential assessment in other tsunamigenic regions of the world.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号