首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   20篇
  国内免费   16篇
地球物理   53篇
地质学   41篇
海洋学   47篇
自然地理   7篇
  2023年   2篇
  2022年   4篇
  2021年   6篇
  2020年   6篇
  2019年   14篇
  2018年   12篇
  2017年   5篇
  2016年   1篇
  2015年   6篇
  2014年   8篇
  2013年   6篇
  2012年   6篇
  2011年   3篇
  2010年   3篇
  2009年   3篇
  2008年   6篇
  2007年   4篇
  2006年   4篇
  2005年   4篇
  2004年   9篇
  2003年   5篇
  2002年   2篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   4篇
  1994年   5篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1984年   1篇
排序方式: 共有148条查询结果,搜索用时 15 毫秒
131.
We studied nine samples of igneous rocks from the inner wall of the Mariana Trench above the Challenger Deep from 4150 to 6100 m depth recovered by manned submersible and ROV. Samples from two regions that bracket the Moho were studied: (i) 7 samples from a N‐S transect a few km to the west of the Shinkai Seep Field; and (ii) 2 samples from the Shinkai Seep Field. Transect samples include olivine‐2 pyroxene hornblendites, amphibole basalts, basaltic andesite, and hornblende andesite. We analyzed three transect samples for 40Ar/39Ar ages; two yielded good plateau ages of 46.5 ±0.5 Ma (hornblendite) and 46.60 ±0.15 Ma (hornblende andesite). These results combined with previously published results, indicate that this crust formed during an intense 46–47 Ma magmatic episode that occurred 5–6 my after subduction initiation. Hornblendites and hornblende basalts formed from primitive magmas, as shown by high MgO (11–21 wt%), Ni (222–885 ppm) and Cr (412–1145 ppm) contents. Electron microprobe analyses indicate that hornblende is Na‐rich (up to 3.0 wt% Na2O) and that many samples have an atypically large range in plagioclase composition (i.e. individual samples have An < 10 to An 90 plagioclase). Two subgroups can be identified: a mostly deeper depleted suite and a mostly shallower enriched suite. These results indicate that (i) the crust–mantle boundary in this region is transitional, occurring over a ~ 1.5 km interval, with interlayered peridotite and hornblendites between 5800 and 4300 m; and (b) extension to form the Challenger Deep forearc segment occurred by combined stretching of old crust and injection of young basaltic magmas. In contrast to the mostly fresh nature of transect samples, the two samples from the Shinaki Seep Field are intensely altered peridotite and basalt.  相似文献   
132.
Deep flows on the slope inshore of the Kuril-Kamchatka Trench southeast off Cape Erimo, Hokkaido were observed for about five years from June 1989 to March 1995, using a mooring system with two current meters. In 1991 and 1993 directionally stable southwestward flows were observed at the upper layer (1000 m). These appear to be typical of the Oyashio because the characteristics of the flows were high mean kinetic energy, low eddy energy and high stability. However, the magnitudes of other mean flows at the upper layer, except for 1991 and 1993, were less than their standard deviations. This suggests that the Oyashio was observed for only a limited period of time. On the other hand, at the lower layer (3000 m) the magnitudes of the mean flows for 10–11 months were 1–3 cm s-1 and ellipses of their eddy kinetic energy were extremely flattened in the direction of the local isobath. The directions of the mean flows in 1990, 1991 and 1993 were southwestward along the local isobath. The relationships between the upper and the lower flows are discussed in terms of monthly change of kinetic energy, since the low-frequency fluctuations longer than 30-day are predominant from the eddy kinetic energy spectra. The results show that there are cases when the kinetic energy of the monthly mean flows at the lower layers are larger than those at the upper layers. This suggests the possibility that the lower flows are in part a southward deep western boundary current.  相似文献   
133.
In the 300 km wide Adak-Amlia sector of the central Aleutian Trench ≈ 36 000 km3 of offscraped trench fill makes up the wedge-shaped mass of the Aleutian accretionary body. Within this wedge, seismic reflection profiles reveal an abundance of potential hydrocarbon-trapping structures. These structures include antiforms, thrust and normal faults, and stratigraphic pinchouts. Maximum closure on these features is 2 km. In addition, the silt and possibly sand size sediment within the offscraped turbidite deposits, and the porous diatomaceous pelagic deposits interbedded with and at the base of the wedge, may define suitable reservoirs for the entrapment of hydrocarbons. Potential seals for these reservoirs include diagenetically-altered and -produced siliceous and carbonate sediment. The organic carbon input into the central Aleutian Trench, based on carbon analyses of DSDP Legs 18 and 19 core samples, suggests that the average organic carbon content within the accretionary body is approximately 0.3–0.6%. Heat flow across the Aleutian Terrace indicates that at present the oil generation window lies at a depth of 3–6.5 km. At depths of 8 km (which corresponds to the maximum depth the offscraped sediment has been seismically resolved beneath the lower trench slope), the probable high (170–180°C) temperatures prohibit all but gas generation. The dewatering of trench sediment and subducted oceanic crust should produce an abundance of fluids circulating within the accretionary body. These fluids and gases can conduct hydrocarbons to any of the abundant trapping geometries or be lost from the system through sea floor seepage. In the Aleutian accretionary body all the conditions necessary for the formation of oil and gas deposits exist. The size and ultimate preservation of these deposits, however, are dependent on the deformational history of the prism both during accretion and after the accretion process has been superceded by subsequent tectonic regimes.  相似文献   
134.
Swath bathymetric, sonar imagery and seismic reflection data collected during the SOPACMAPS cruise Leg 3 over segments of the Vitiaz Trench Lineament and adjacent areas provide new insights on the geometry and the stuctural evolution of this seismically inactive lineament. The Vitiaz Trench Lineament, although largely unknown, is one of the most important tectonic feature in the SW Pacific because it separates the Cretaceous crust of the Pacific Plate to the north from the Cenozoic lithosphere of the North Fiji and Lau Basins to the south. The lineament is considered to be the convergent plate boundary between the Pacific and Australian Plates during midde to late Tertiary time when the Vitiaz Arc was a continuous east-facing are from the Tonga to the Solomon Islands before the development of the North Fiji and Lau Basins. Progressive reversal and cessation of subduction from west to east in the Late Miocene-Lower Plioene have been also proposed. However, precise structures and age of initiation and cessation of deformation along the Vitiaz Trench Lineament are unknown.The lineament consists of the Vitiaz Trench and three discontinuous and elongated troughs (Alexa, Rotuma and Horne Troughs) which connect the Vitiaz Trench to the northern end of the Tonga Trench. Our survey of the Alexa and Rotuma Troughs reveals that the lineament is composed of a series of WNW-ESE and ENE-WSW trending segments in front of large volcanic massifs belonging to the Melanesian Border Plateau, a WNW trending volcanic belt of seamounts and ridges on Pacific crust. The Plateau and Pacific plate lying immediately north of the lineament have been affected by intense normal faulting, collapse, and volcanism as evidenced by a series of tilted blocks, grabens, horsts and ridges trending N 120° to N100° and N60°–70°. This tectonism includes several normal faulting episodes, the latest being very recent and possibly still active. The trend of the fault scarps and volcanic ridges parallels the different segments of the Vitiaz Trench Lineament, suggesting that tectonics and volcanism are related to crustal motion along the lineament.Although the superficial observed features are mainly extensional, they are interpreted as the result of shortening along the Vitiaz Trench Lineament. The fabric north of the lineament would result from subduction-induced normal faulting on the outer wall of the trench and the zig-zag geometry of the Vitiaz Trench Lineament might be due to collision of large volcanic edifices of the Melanesian Border Plateau with the trench, provoking trench segmentation along left-lateral ENE-WSW trending transform zones. The newly acquired bathymetric and seismic data suggest that crustal motion (tectonism associated with volcanism) continued up to recent times along the Vitiaz Trench Lineament and was active during the development of the North Fiji Basin.  相似文献   
135.
The present paper deals with the numerical modelling of trench drainage in variably saturated porous media. In particular, the effect of the unsaturated storage coefficient form on the rate of transient seepage into the trench is investigated. Several numerical analyses are performed for two different soil types. The numerical results derived using a pressure head-dependent storage coefficient, are compared to those derived using constant storage coefficients. It is shown that simplifying assumptions using constant storage coefficients may predict too fast drainage rates.  相似文献   
136.
Abstract Seismic reflections across the accretionary prism of the North Sulawesi provide excellent images of the various structural domains landward of the frontal thrust. The structural domain in the accretionary prism area of the North Sulawesi Trench can be divided into four zones: (i) trench area; (ii) Zone A; (iii) Zone B; and (iv) Zone C. Zone A is an active imbrication zone where a decollement is well imaged. Zone B is dominated by out‐of‐sequence thrusts and small slope basins. Zone C is structurally high in the forearc basin, overlain by a thick sedimentary sequence. The subducted and accreted sedimentary packages are separated by the decollement. Topography of the oceanic basement is rough, both in the basin and beneath the wedge. The accretionary prism along the North Sulawesi Trench grew because of the collision between eastern Sulawesi and the Bangai–Sula microcontinent along the Sorong Fault in the middle Miocene. This collision produced a large rotation of the north arm of Sulawesi Island. Rotation and northward movement of the north arm of Sulawesi may have resulted in southward subduction and development of the accretionary wedge along North Sulawesi. Lateral variations are wider in the western areas relative to the eastern areas. This is due to greater convergence rates in the western area: 5 km/My for the west and 1.5 km/My for the east. An accretionary prism model indicates that the initiation of growth of the accretionary prism in the North Sulawesi Trench occurred approximately 5 Ma. A comparison between the North Sulawesi accretionary prism and the Nankai accretionary prism of Japan reveals similar internal structures, suggesting similar mechanical processes and structural evolution.  相似文献   
137.
Abstract Interstitial pore waters from Ocean Drilling Program Site 1150, where ~1200 m of sub‐sea‐floor sediment from the upper Japan Trench forearc were recovered, were analyzed for element concentrations and Cl, Sr and B isotopes. Although chlorinity showed profound down‐hole freshening to values as low as ~310 mm (0.55 × seawater) in the deeper part of the claystone‐dominated succession, both Sr and B concentrations showed an overall increase. Sr reached concentrations of up to >250 µm (~3.00 × seawater), whereas B‐enrichment was even stronger (3920 µm; i.e. 9.30 × seawater). The strong variations in concentration correspond to fractionation reactions in the deep, tectonically deformed part of the forearc. The heavily fractured portion of Site 1150 (from ~700 m to the total depth of the hole) has two shear zones that very likely act as conduits that expel deep‐seated fluids to the sea floor. These fluids not only showed the strongest freshening of Cl, but were also characterized by low δ37Cl measurements (down to ?1.1‰), the heaviest δ11B measurements (~40–46‰) and the least radiogenic 87Sr/ 86Sr measurements. The profound isotope anomalies together with the excursions in element concentrations suggest that diagenetic processes operate at that depth. These include clay mineral diagenesis, alteration of tephra from the Japan and Izu Arcs, and possibly transformation of biogenic silica from abundant diatoms. Given the strong enrichment of some mobile elements (e.g. Sr, B, Li), enhanced fluid flow through permeable penetrative faults through the forearc (like the shear zones at Site 1150) could be an efficient mechanism for back‐flux of those elements from the deep forearc into the hydrosphere.  相似文献   
138.
利用日本海区丰富的震史资料,研究了该区强震活动时—空变化的某些特征,并以此为据,将1900年以来的地震活动划分了三个地震轮回,同时还分析了各轮回的强震地区分布及其持续时间。分析了中国东北地区深震(mb≥6.0)及浅震(MS≥5.0)的成组性活动特征,研究了日本海西部深震与中国东北地区浅震的相关性。这些结果可作为研究日本海区强震高潮到来和结束的标志以及为判断未来主体活动区等强震预测问题提供线索。  相似文献   
139.
The Alpine Orogen in the Mediterranean region exhibits a series of orogenic curvatures (oroclines). The evolution of these oroclines is relatively well constrained by a plethora of geophysical and geological data, and therefore, their origin can inform us on the fundamental processes controlling oroclinal bending. Here, a synthesis of the geometry of Mediterranean oroclines, followed by a discussion on their geodynamic origin is presented. The geometrical synthesis is based on a new classification of Mediterranean oroclines, which defines a first-order orocline (Adriatic Orocline) by the general northward-convex shape of the Alpine Orogen from Cyprus to Gibraltar. Superimposed on the limbs of this orocline, are second-, third- and fourth-order oroclines. The major process that led to the formation of the Adriatic Orocline is the indentation of Adria into Europe, whereas second- and third-order oroclines (e.g., Western Mediterranean and Gibraltar oroclines, respectively) were primarily controlled by a combination of trench retreat and slab tearing. It appears, therefore, that the geodynamics of Mediterranean oroclines has been entirely dependent on plate boundary migration and segmentation, as expressed in the interlinked processes of indentation, trench retreat and slab tearing. The relative contribution of specific geodynamic processes, and their maturity, could be inferred from geometrical characteristics, such as the amplitude-to-width ratio, the orientation of the curvature (convex or concave) relative to the convergence vector, and their geometrical relationship with backarc extensional basins (e.g., in the concave side of the orocline). Based on the information from the Mediterranean oroclines, it is concluded that oroclinal bending commonly involves lithospheric-scale processes, and is not restricted to thin-skinned deformation. However, contrary to previous suggestions that assume that the whole lithosphere can buckle, there is no clear evidence that such processes occur in modern tectonic environments.  相似文献   
140.
海斗深渊是海洋中最深的区域,由水深范围在6000~11000 m范围内的深部海沟组成,以极端的物理化学条件为特征,其沉积物以深海黏土为主。基于目前关于马里亚纳海沟及其沉积物的研究进展,总结了海斗深渊的地貌、物理化学和水动力等方面的特征;归纳了海斗深渊沉积物的粒度特征、矿物组成和古生物特征;探讨了海斗深渊沉积物的物质来源及主要分析方法。海斗深渊沉积物的物质来源具有多源性,综合多种方法示踪是准确揭示其物质物源的关键。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号