首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   282篇
  免费   31篇
  国内免费   158篇
地球物理   16篇
地质学   450篇
海洋学   1篇
综合类   1篇
自然地理   3篇
  2024年   5篇
  2023年   8篇
  2022年   18篇
  2021年   12篇
  2020年   30篇
  2019年   31篇
  2018年   15篇
  2017年   37篇
  2016年   19篇
  2015年   11篇
  2014年   17篇
  2013年   85篇
  2012年   26篇
  2011年   17篇
  2010年   8篇
  2009年   16篇
  2008年   18篇
  2007年   21篇
  2006年   14篇
  2005年   7篇
  2004年   13篇
  2003年   6篇
  2002年   7篇
  2001年   4篇
  2000年   2篇
  1999年   5篇
  1998年   7篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1984年   1篇
  1983年   1篇
  1973年   1篇
  1954年   1篇
排序方式: 共有471条查询结果,搜索用时 31 毫秒
411.
Three major types of economic secondary iron ores occur in Western Australia, mainly in the banded iron-formation (BIF)-rich Hamersley Province of the Pilbara:
  1. the dominant BIF-hosted bedded iron deposits (BID; ~40 billion tonnes (Bt); 58–65 wt% Fe); and the detrital ores, mainly in the three province-wide Cenozoic sequences that include coeval non-ore sediments:

  2. Miocene channel iron deposits (CID; ~>15 Bt; 54–58 wt% Fe) of the Cenozoic Detritals 2 (CzD2); and

  3. Eocene CzD1 and Pliocene CzD3 detrital iron deposits (DID; ~3.5 Bt; 40–60 wt% Fe).

Striking differences exist between the massive CID resources and the much smaller underlying and overlying DID. CID are essentially riverine alluvial ooidal rocks with abundant small fossil wood fragments and variable peloids, but with only extremely rare, recognisable lithic remnants. The original matrix is typically ramifying layered goethite. Eocene DID are mainly alluvial with only minor pisoids, whereas Pliocene–Quaternary DID are dominantly coarse colluvial gravels, with minor pisoids, both derived from and largely retaining the original textures of BID, hardcap or variably ferruginised surface BIF. The coluvial DID matrix is typically ferroan-aluminous soil, resulting in canga where replaced by goethite, which may be dehydrated to hematite in part by exposure. The Cenozoic deposits described in detail in this paper occur in two dominant geomorphological environments: the southern Marra Mamba to Brockman Iron Formation strike valleys (MBSV), containing all three Cenozoic sequences; and the much later northern Brockman IF plateau valleys (BPV) that include only the Miocene and Pliocene sequences. Minor basinal/deltaic alluvials occur in the Proterozoic. The Cenozoic detritals formed in different climatic regimes, with an extended dry period forming a prominent province-wide dehydrated carapace on the Eocene DID. The Miocene ‘optimum’ followed with its thick scrub-covered deep regolith that produced the fossil wood-rich CID, succeeded by the arid cool period of the Oakover limestone/calcrete. A major renewal of exposure and erosion in the Pliocene resulted in the extensive iron gravels of the Pliocene–Quaternary.  相似文献   
412.
Australites in an excellent state of preservation are common (up to 1 specimen per 300 m2) in lag gravels flooring corridors between seif dunes in the Motpena and Myrtle Springs areas of the Lake Torrens plain, South Australia. A study of the Quaternary stratigraphy of the region indicates that late Wisconsinan relict dunes (Lake Torrens Formation) are the most likely source of the australites. Radiocarbon dating indicates that the Lake Torrens Formation was deposited between about 24,000 and 16,000 years B.P. As the excellent preservation of most of the australites indicates that they have undergone negligible transport since their infall, it is concluded that the australites fell into the dune field sometime between about 24,000 and 16,000 years B.P.  相似文献   
413.
Stratigraphic, geomorphological, and radiometric evidence shows that the laterite of the high plains and plateau of Kangaroo Island is older than the Middle Jurassic but younger than the Early Permian. Palaeoclimatic and palaeontological considerations suggest the Triassic as the most likely age of both the laterite and the surface on which it is developed. High‐level lateritized surfaces in the adjacent Mount Lofty Ranges and southern Eyre Peninsula are of similar age.  相似文献   
414.
Field relations from a small area in the Maubisse region of Portuguese Timor fail to support the hypothesis of southward overthrusting of Permian rocks (Audley‐Charles, 1965) or the postulate that the Maubisse Formation represents a mid‐Tethys island group (Audley‐Charles et al., 1972).  相似文献   
415.
The interpretation of Canberra's landforms as unexhumed survivals from Bowning faulting and mid‐Devonian vulcanicity is opposed. Some major faults are truncated whereas sharp scarps coincide with others. In the nearby Taemas area, the Canberra‐Yass Plains cut across Tabberabberan folds. Summit surface remnants surviving high in the A.C.T. Ranges and discordant river gorges are incompatible with extreme age of the relief. River nick‐points and steps between surfaces are some related and some unrelated to faults, with like import. Stripping of the Murrumbidgee Batholith, also of Bowning age, would have caused substantial filling of the Canberra Rift; during subsequent removal, erosion would not have entirely respected Silurian rocks similar in resistance to Devonian fill. Permian rocks to the east must in part derive from erosion of the Canberra area. Local rates of denudation of 5 cm/1000 y. are hard to reconcile with survival of high steep relief from the mid‐Devonian.

Alternative explanations are given for those characters of the Fyshwick Gravels which led them to be regarded as Permian glaciofluvials.

The same evidence supports Browne's standpoint that the relief is polycyclic through epeirogenic uplift at intervals, together with posthumous movement along some old faults.  相似文献   
416.
《International Geology Review》2012,54(14):1806-1824
In this article, we present in situ U–Pb and Lu–Hf isotope data for Upper Triassic detritus in the Sichuan region of northwestern South China, which was a foreland basin during the Late Triassic. The aim is to determine the provenance of sediments in the foreland basin and to constrain the evolution of the surrounding mountain belts. U–Pb age data for the Late Triassic detrital zircons generally show populations at 2.4–2.6 Ga, 1.7–1.9 Ga, 710–860 Ma, 410–460 Ma, and 210–300 Ma. By fitting the zircon data into the tectonic, sedimentologic, and palaeographic framework, we propose that the north Yangtze Block and South Qinling–Dabie Orogen were the important source areas of sediments in the northern part of the foreland basin, whereas the Longmen Shan thrust-fold belt was the main source region for detritus in other parts of the foreland basin. The South Qinling–Dabie Orogen could also have served as a physical barrier to block most detritus shed from the southern North China Block into the foreland basin during the sedimentation of the Xujiahe Formation. Our results also reveal that part of the flysch from the eastern margin of the Songpan–Ganzi region had been displaced into the Longmen Shan thrust-fold belt before the deposition of the foreland basin sediments. In addition, the Lu-Hf data indicate that Phanerozoic igneous rocks in central China show insignificant formation of the juvenile crust.  相似文献   
417.
ABSTRACT

The Vorontsovka terrane (VT) is an important component of the East Sarmatian Orogen (ESO) which divides the Precambrian cores of the Sarmatian and Volgo-Uralia segments of the East European Craton (EEC). The tectonic framework of the VT remains controversial due to poor constraints from geochemical and geochronological studies. In this article we present detrital zircon U–Pb ages and geochemical features of the Precambrian meta-sedimentary rocks from the VT, which occur interlayered with calc-silicate rocks and metabasites. Most of the zircons from metasediments possess oscillatory zoning and high Th/U ratios (>0.2), indicating magmatic provenance. Their 207Pb/206Pb ages cluster around 2093 ± 7, 2126 ± 7, 2158 ± 12, 2189 ± 16, and 2210 ± 31 Ma, correlating with the ages of magmatic zircon cores from the surrounding igneous suites, and reflecting a single tectono-magmatic cycle (~2200–2100 Ma) in the source area. Age of the youngest detrital zircon grain from the metasedimentary rocks and the cores of zircon grains from igneous suites show 207Pb/206Pb ages at 2094 and 2106 Ma, respectively. Together with the largest age clusters of 2126 ± 7 and 2158 ± 12 Ma of the magmatic cores of the detrital zircons, the timing of sedimentation is inferred as ~ 2100–2170 Ma.

The metapelites display strong rare earth element fractionation with variable Eu anomalies ((La/Yb)N = 7.0–14.5, Eu/Eu* = 0.49–1.23). In contrast, the calc-silicate rocks and metabasites lack Eu anomalies ((La/Yb)N = 5.2–11.5, Eu/Eu* = 0.87–1.00). The large-ion lithophile (LILE) and high field strength element (HFSE) concentrations of most samples are comparable with those of the upper continental crust (UCC). The rocks possess negative anomalies of Th, Nb, Sr, and Zr relative to UCC. Their high Index of Compositional Variability (0.85–1.32, up to 1.8 in metabasites) and relatively low Chemical Index of Alteration (46.1–70.4) indicate that the metapelitic sediments were immature to weakly immature and probably underwent minor chemical weathering. The protoliths of the metabasites are interpreted as interlayered volcano-sedimentary and pyroclastic material. Relict clastic textures of the VT rocks, their geochemical features, and the grain morphology of detrital zircons suggest that the sediments were derived from intermediate and felsic provenances, which were most likely deposited in an environment with active volcanism. We envisage an active continental margin setting in the southwestern part of the Volgo-Uralia segment of the EEC related to the assembly of the Palaeoproterozoic Columbia supercontinent. Combined with recent data from surrounding terranes of the ESO, our results suggest that the VT represents an accretionary prism along a continental arc within the Sarmatia and Volgo-Uralia oceanic realm in the Palaeoproterozoic.  相似文献   
418.
《International Geology Review》2012,54(16):2046-2064
ABSTRACT

The Jebel Ja’alan and Qalhat inliers of Oman represent the easternmost exposures in the Arabian peninsula of the Neoproterozoic basement associated with the East African Orogen (EAO) and the assembly of East and West Gondwana. These inliers expose tonalitic gneisses and metasediments intruded by granodiorites and granites of the Ja’alan batholith. Zircons from the gneisses yield U–Pb SIMS ages of ca. 900–880 Ma, which are interpreted as crystallization ages. These represent the oldest magmatic events associated with the closure of the Mozambique Ocean reported to date. Zircon of this age is also the dominant component in the metasediments. The Ja’alan batholith yields ages of ca. 840–825 Ma. Nd isotopes indicate that both the gneisses and the batholith range from juvenile to slightly more evolved, with εNd(t) of +6 to +1.5 interpreted to reflect variable contamination by older, evolved continental material; this is also indicated by >900 Ma detrital zircon from the metasediments. The Nd data also contrast with the uniformly juvenile signature of younger, ca. 840 Ma, rocks of the Marbat region of southern Oman that lie structurally to the west. The Ja’alan and Qalhat inliers thus document eastward increasing age and continental influence, consistent with the progressive development of arc rocks onto the western margin of East Gondwana, although the location and nature of the eastern continental block remain elusive.  相似文献   
419.
赞皇变质杂岩位于华北克拉通中部造山带中南段,阜平杂岩以南,太古代变质岩石在该杂岩区仅有零星出露。目前研究发现,在赞皇变质杂岩的西南部地区亦有太古代(含榴)斜长角闪岩出露,且与东南部的斜长角闪岩具有类似的地球化学性质,其原岩为亚碱性玄武质岩石,形成于岛弧构造环境。岩石中石榴石保留微弱的进变质生长环带,且记录了进变质、峰期变质和退变质三个阶段的矿物组合。不同阶段的温压估算结果分别为:进变质阶段约679℃和8.4kbar,高峰期变质条件位于高角闪岩相,最高温度超过702℃、最高压力大于9.3kbar,退变质阶段温度为633~636℃、压力为5.2~5.4kbar。该地区含榴斜长角闪岩拥有典型的顺时针近等温减压型(ITD)的变质作用P-T轨迹,推测赞皇变质杂岩可能卷入了华北克拉通东部陆块和西部陆块之间的俯冲-碰撞-快速隆升过程。同时,早期进变质作用阶段信息的保留为俯冲过程的存在提供了新的证据。  相似文献   
420.
Archean basement gneisses and supracrustal rocks, together with Neoproterozoic (Sinian) metasedimentary rocks (the Penglai Group) occur in the Jiaobei Terrane at the southeastern margin of the North China Craton. SHRIMP U–Pb zircon dating of an Archean TTG gneiss gave an age of 2541 ± 5 Ma, whereas metasedimentary rocks from the Neoproterozoic Penglai Group yielded a range in zircon ages from 2.9 to 1.8 Ga. The zircons can be broadly divided into three age populations, at: 2.0–1.8 Ga, 2.45–2.1 Ga and >2.5 Ga. Detrital zircon grains with ages >2.6 Ga are few in number and there are none with ages <1.8 Ga. These results indicate that most of the detrital material comes from a Paleoproterozoic source, most likely from the Jianshan and Fenzishan groups, with some material coming from Archean gneisses in the Jiaobei Terrane. An age of 1866 ± 4 Ma for amphibolite-facies hornblende–plagioclase gneiss, forming part of a supracrustal sequence within the Archean TTG gneiss, indicates Late Paleoproterozoic metamorphism. Both the Archean gneiss complex and Penglai metasedimentary rocks resemble previously described components of the Jiao-Liao-Ji orogenic belt and suggest that the Jiaobei Terrane has a North China Craton affinity; they also suggest that the time of collision along the Jiao-Liao-Ji Belt was at 1865 Ma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号