首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   282篇
  免费   31篇
  国内免费   158篇
地球物理   16篇
地质学   450篇
海洋学   1篇
综合类   1篇
自然地理   3篇
  2024年   5篇
  2023年   8篇
  2022年   18篇
  2021年   12篇
  2020年   30篇
  2019年   31篇
  2018年   15篇
  2017年   37篇
  2016年   19篇
  2015年   11篇
  2014年   17篇
  2013年   85篇
  2012年   26篇
  2011年   17篇
  2010年   8篇
  2009年   16篇
  2008年   18篇
  2007年   21篇
  2006年   14篇
  2005年   7篇
  2004年   13篇
  2003年   6篇
  2002年   7篇
  2001年   4篇
  2000年   2篇
  1999年   5篇
  1998年   7篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1984年   1篇
  1983年   1篇
  1973年   1篇
  1954年   1篇
排序方式: 共有471条查询结果,搜索用时 46 毫秒
401.
Although the presence of post-Hamersley Group mafic intrusive and extrusive rocks in the southern Hamersley province of Western Australia has been known since the area was first mapped in the early 1960s, details of the age, tectonic setting and significance of these rocks have only recently been determined, and are still controversial. These rocks are most commonly interpreted as the products of two temporally distinct periods of continental extension, separated by a hiatus of ~370 m.y. represented by the unconformity at the base of the Wyloo Group. However, the integration of published geochronological and geochemical data with detailed field observations documented in this study shows that ca 2.2 Ga dolerite sills pre- and post-date this unconformity, and were intruded during Ophthalmian orogenesis in a retroarc foreland basin. Furthermore, ca 2.2 Ga mafic magmatism is interpreted to include the Cheela Springs Basalt and is related to subduction beneath the southern Hamersley province, most likely resulting in accretion of part of the Gascoyne Province to the Pilbara Craton.  相似文献   
402.
40Ar/39Ar age data from the boundary between the Delamerian and Lachlan Fold Belts identify the Moornambool Metamorphic Complex as a Cambrian metamorphic belt in the western Stawell Zone of the Palaeozoic Tasmanide System of southeastern Australia. A reworked orogenic zone exists between the Lachlan and Delamerian Fold Belts that contains the eastern section of the Cambrian Delamerian Fold Belt and the western limit of orogenesis associated with the formation of an Ordovician to Silurian accretionary wedge (Lachlan Fold Belt). Delamerian thrusting is craton-verging and occurred at the same time as the final consolidation of Gondwana. 40Ar/39Ar age data indicate rapid cooling of the Moornambool Metamorphic Complex at about 500 Ma at a rate of 20 – 30°C per million years, temporally associated with calc-alkaline volcanism followed by clastic sedimentation. Extension in the overriding plate of a subduction zone is interpreted to have exhumed the metamorphic rocks within the Moornambool Metamorphic Complex. The Delamerian system varies from a high geothermal gradient with syntectonic plutonism in the west to lower geothermal gradients in the east (no syntectonic plutonism). This metamorphic zonation is consistent with a west-dipping subduction zone. Contrary to some previous models involving a reversal in subduction polarity, the Ross and Delamerian systems of Antarctica and Australia are inferred to reflect deformation processes associated with a Cambrian subduction zone that dipped towards the Gondwana supercontinent. Western Lachlan Fold Belt orogenesis occurred about 40 million years after the Delamerian Orogeny and deformed older, colder, and denser oceanic crust, with metamorphism indicative of a low geothermal gradient. This orogenesis closed a marginal ocean basin by west-directed underthrusting of oceanic crust that produced an accretionary wedge with west-dipping faults that verge away from the major craton. The western Lachlan Fold Belt was not associated with arc-related volcanism and plutonism occurred 40 – 60 million years after initial deformation. The revised orogenic boundaries have implications for the location of world-class 440 Ma orogenic gold deposits. The structural complexity of the 440 Ma Stawell gold deposit reflects its location in a reworked part of the Cambrian Delamerian Fold Belt, while the structurally simpler 440 Ma Bendigo deposit is hosted by younger Ordovician turbidites solely deformed by Lachlan orogenesis.  相似文献   
403.
The Trans-Tanami Fault in the poorly exposed Paleoproterozoic Granites-Tanami Orogen of Western Australia is an ~100 km long curvilinear structure with ~6 km right lateral displacement. Multi-scale integration and analysis of aeromagnetic, gravimetric, reflection seismic and remote sensing data have constrained the relative timing and architectural relationship of this structure. Interpretation of regional scale long-wavelength potential field (gravity and magnetic) anomalies, which are commonly used to define first-order structures, show that the fault is not a terrane boundary. Structural interpretation of short-wavelength potential field data illustrates that the structural domains on either side of the fault represent the products of a non-homogeneous stress regime developed between rigid granitic plutons. Additionally, 2D joint forward modelling of gravity and magnetic data and interpretation of reflection seismic data confirms the vertical displacement across this fault to be negligible indicating a predominant lateral displacement. The lateral displacement along a portion of this structure has exploited a pre-existing plane of a north-dipping thrust fault. Where this early thrust fault terminates, the Trans-Tanami Fault displaces previously unfaulted rock as a wrench fault step-over. These observations differ from previous findings in the area by constraining the absolute displacement of this structure and through the recognition of a wrench fault system that includes lateral step-overs between re-activated early thrust fault planes.  相似文献   
404.
A 581 km vibroseis-source, deep seismic reflection survey was acquired through the Capricorn Orogen of Western Australia and, for the first time, provides an unprecedented view of the deep crustal architecture of the West Australian Craton. The survey has imaged three principal suture zones, as well as several other lithospheric-scale faults. The suture zones separate four seismically distinct tectonic blocks, which include the Pilbara Craton, the Bandee Seismic Province (a previously unrecognised tectonic block), the Glenburgh Terrane of the Gascoyne Province and the Narryer Terrane of the Yilgarn Craton. In the upper crust, the survey imaged numerous Proterozoic granite batholiths as well as the architecture of the Mesoproterozoic Edmund and Collier basins. These features were formed during the punctuated reworking of the craton by the reactivation of the major crustal structures. The location and setting of gold, base metal and rare earth element deposits across the orogen are closely linked to the major lithospheric-scale structures, highlighting their importance to fluid flow within mineral systems by the transport of fluid and energy direct from the mantle into the upper crust.  相似文献   
405.

Serpentinised peridotite and ultramafic breccia make up an approximately 5 km‐long, 1 km‐wide fault slice within turbidites in the Dolodrook River region of the central Lachlan Orogen. The serpentinite body is surrounded by juvenile, mafic‐ultramafic sedimentary rocks with Cambrian limestone olistoliths representative of locally derived debris flows, and Middle to Upper Ordovician black shale, chert, sandstone and mudstone. The antiformal geometry and nature of the ultramafic breccia and mafic‐ultramafic sedimentary rocks (Garvey Gully Formation) indicate that the serpentinite body may have been either a former oceanic transform fault zone, a Marianas‐style serpentine seamount or a combination of these. Observations of modern‐day forearc regions show that faulting processes have led to the exposure of serpentinised peridotite horst blocks and serpentine mud volcanoes that have intruded along fault conduits (e.g. Marianas and Izu‐Bonin forearcs). At Dolodrook, the structural and metamorphic relationships with the surrounding rocks, and the lithological associations, have much in common with these observations and indicate that Dolodrook may be an ancient, on‐land example of an accreted seamount or oceanic topographic high. Structural relationships, the very low metamorphic grade of all rocks at Dolodrook, and the presence of broken formation developed in not‐fully lithified Middle to Upper Ordovician sandstone and mudstone indicate that the serpentinite body was emplaced at shallow crustal levels within the turbidite wedge (Tabberabbera Zone), possibly as an offscraped topographic high during marginal basin closure. The Dolodrook serpentinite has previously been inferred as part of the Cambrian igneous sequence (‘greenstones’) exposed in the Governor, Mt Wellington and Heathcote Fault Zones, but structural and metamorphic relationships with surrounding rocks, and the Cambrian tectonic setting in which it formed, have remained speculative.  相似文献   
406.
The Quaternary beach sand of SE Australia, driven northward by southern swell, contains zircons with dominant U–Pb ages of 700–500 Ma, model ages (TDMc) of 2.2 Ga to 1.0 Ga, and ?Hf of +12 to –30, indicating a host rock type of granitoids with alkaline affinity. These properties match those of detrital zircons in the Middle Triassic (ca 240 Ma) Hawkesbury Sandstone (TDMc of 2.1 to 1.0 Ga, ?Hf of +8 to –40, alkaline granitoids) and the Ordovician (ca 460 Ma) turbidites and ca 430 Ma S-type granitoids of the Lachlan Orogen (T2DM of 2.0 to 1.0 Ga, ?Hf of +5 to –30), all of which are identified as proximal provenances. Superimposed are the ca 400 Ma zircons in beaches in the south backed by the 420–375 Ma I-type Bega Batholith, and ca 350 Ma and ca 250 Ma zircons in the north backed by the New England Orogen. The Ordovician turbidites, part of a deep-sea super-fan, were fed by the detritus of the exhumed 700–500 Ma Transgondwanan Supermountains atop the East African–Antarctic Orogen. At the same time, the ancestral Gamburtsev Subglacial Mountains of East Antarctica probably contributed a subsidiary fan of 700–500 Ma sediment. Primary zircons aged 600–500 Ma in igneous and metamorphic rocks in Australia and the ancestral Transantarctic Mountains are minor contributors of the Australian sediments. The properties of the 700–500 Ma primary zircons in the East African–Antarctic Orogen are traceable through the first-cycle Ordovician turbidite and intruding second-cycle granite, and younger sediment, such as the third-cycle Triassic Hawkesbury Sandstone and the third-cycle beach sand. The sand at the northern terminus of the coastal system off Fraser Island spills over the shelf edge into the Tasman Abyssal Plain to reflect in miniature the deep-sea depositional environment of the Ordovician.  相似文献   
407.
Abstract

The nature of the substrate below the northern Lachlan Orogen and the southern Thomson Orogen is poorly understood. We investigate the nature of the mid- to lower-crust using O and Lu–Hf isotope analyses of zircons from magmatic rocks that intrude these regions, and focus on the 440–410 Ma time window to minimise temporal effects while focussing on spatial differences. Over the entire region, weighted mean δ18O values range from 5.5 to 9.8‰ (relative to VSMOW, Vienna Standard Mean Oceanic Water), and weighted mean ?Hft range from ?8.8 to +8.5. In the northern Lachlan Orogen and much of the southern Thomson Orogen, magmatic rocks with unradiogenic ?Hft (~?7 to ?4) and elevated δ18O values (~9 to 10‰) reflect a supracrustal source component that may be common to both orogens. Magmatic rocks intruding the Warratta Group in the western part of the Thomson Orogen also have unradiogenic ?Hft (~?9 to ?6) but more subdued δ18O values (~7‰), indicating a distinct supracrustal source component in this region. Some regions record radiogenic ?Hf and mantle-like δ18O values, indicative of either a contribution from arc-derived rocks or a direct mantle input. In the northeast Lachlan Orogen Hermidale Terrane, magmatic rocks record mixing of the supracrustal source component with input from a infracrustal or mantle source component (?Hft as high as +8.5, δ18O values as low as 5.5‰), possibly of Macquarie Arc affinity. Samples in the west-southwestern Thomson Orogen also record some evidence of radiogenic input (?Hft as high as ?0.5, δ18O values as low as 6.4‰), possibly from the Mount Wright Arc of the Koonenberry Belt. Overall, our results demonstrate a strong spatial control on isotopic compositions. We find no isotopic differences between the bulk of the Lachlan Orogen and the bulk of the Thomson Orogen, and some indication of similarities between the two.  相似文献   
408.
The southern part of the New England Orogen exhibits a series of remarkable orogenic bends (oroclines), which include the prominent Z-shaped Texas and Coffs Harbour oroclines. The oroclines are defined by the curvature of Devonian–Carboniferous forearc basin and accretionary complex rock units. However, for much of the interpreted length of the Texas Orocline, the forearc basin is mostly concealed by younger strata, and crops out only in the Emu Creek Block in the eastern limb of the orocline. The geology of the Emu Creek Block has hitherto been relatively poorly constrained and is addressed here by presenting new data, including a revised geological map, stratigraphic sections and new detrital zircon U–Pb ages. Rocks of the Emu Creek Block include shallow-marine and deltaic sedimentary successions, corresponding to the Emu Creek and Paddys Flat formations, respectively. New detrital zircon U–Pb data indicate that these formations were deposited during the late Carboniferous and that strata were derived from a magmatic source of Devonian to Carboniferous age. The sedimentary provenance and detrital zircon age distribution suggest that the sequence was deposited in a forearc basin setting. We propose that the Emu Creek and Paddys Flat formations are arc-distal, along-strike correlatives of the northern Tamworth Belt, which is part of the forearc basin in the western limb of the Texas Orocline. These results confirm the suggestion that Devonian–Carboniferous forearc basin rocks surround the Texas Orocline and have been subjected to oroclinal bending.  相似文献   
409.
左权-赞皇变质杂岩的地球化学特征及其构造意义   总被引:3,自引:3,他引:0  
左权变质杂岩位于华北克拉通中部造山带的中南段,赞皇变质杂岩西南。两杂岩区出露的早元古代——晚太古代变质岩石类型主要有:长英质片麻岩、黑云斜长片麻岩、斜长角闪岩、石榴角闪岩、云母片岩和长石石英岩等。通过详细地野外地质调查、岩相学以及地球化学研究发现,左权变质杂岩与赞皇变质杂岩有类似的地球化学性质,其中,长英质片麻岩、黑云斜长片麻岩和角闪岩的原岩均有正、有副,按原岩性质可分为变质沉积岩、变质花岗质岩石和变质基性岩三类。变质沉积岩的原岩为粘土岩或杂砂岩,物源以上地壳的长英质成分为主,REE配分型式与PAAS以及上地壳平均成分类似,原岩在形成过程中经历了中——低等程度的风化作用,沉积背景为有演化岛弧发育的活动大陆边缘;变质花岗质岩石的原岩为中酸性侵入岩,形成于大陆边缘弧环境,与变质沉积岩呈侵入接触关系;变质基性岩的原岩是拉斑——钙碱玄武质岩石,其稀土总量较低、轻稀土轻微富集,地壳混染作用明显,总体形成环境类似于现代大陆边缘的岛弧构造环境。基于以上地球化学特征推测左权——赞皇变质杂岩形成于典型碰撞造山环境,卷入了华北克拉通东部陆块和西部陆块之间的俯冲——碰撞过程。  相似文献   
410.
太华变质杂岩出露于华北克拉通中部造山带最南缘,整体呈近东西向展布。华山地区的太华变质杂岩区岩性复杂多样,保存了至少三个阶段的变质矿物组合。本文对其中的黑云斜长片麻岩和黑云二长片麻岩中的锆石,进行了详细的LA-ICP-MS U-Pb定年;对斜长角闪片麻岩中的变质角闪石,进行了常规40Ar/39Ar定年。定年结果表明:(1)黑云斜长片麻岩中的碎屑锆石记录了两期(~2.3Ga和~2.5Ga)明显的岩浆事件,变质锆石记录了一期(1.87~1.85Ga)变质事件;(2)黑云二长片麻岩中的岩浆锆石U-Pb年龄为2.33Ga和2.31Ga,变质锆石记录的变质年龄为1.96Ga;(3)两个斜长角闪片麻岩样品中,变质角闪石的40Ar/39Ar坪年龄和等时线年龄说明,该地区经历了一期~1.8Ga的变质热事件。这些数据说明,太华变质杂岩也记录了华北克拉通东部陆块与西部陆块之间的碰撞造山过程,不过比中部造山带其它变质杂岩区记录的时间更早,变质作用持续的时间也更长。这暗示了该地区在1.96~1.80Ga期间,经历了一次比较漫长而复杂的构造-变质演化过程。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号