首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   290篇
  免费   32篇
  国内免费   166篇
地球物理   18篇
地质学   463篇
海洋学   3篇
综合类   1篇
自然地理   3篇
  2024年   6篇
  2023年   12篇
  2022年   25篇
  2021年   12篇
  2020年   31篇
  2019年   31篇
  2018年   15篇
  2017年   38篇
  2016年   19篇
  2015年   12篇
  2014年   18篇
  2013年   85篇
  2012年   26篇
  2011年   18篇
  2010年   8篇
  2009年   16篇
  2008年   18篇
  2007年   21篇
  2006年   14篇
  2005年   7篇
  2004年   13篇
  2003年   6篇
  2002年   7篇
  2001年   4篇
  2000年   2篇
  1999年   5篇
  1998年   7篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1984年   1篇
  1983年   1篇
  1973年   1篇
  1954年   1篇
排序方式: 共有488条查询结果,搜索用时 15 毫秒
211.
Rocks of Upper Precambrian age near Adelaide show evidence of two or more phases of deformation. The first phase has resulted in concentric and similar folds with an associated slaty cleavage. Structures of this phase are overprinted by folds with associated crenulation cleavage. Minor occurrences of later kink folds are also observed. The hypothesis that the first phase folds overprint very large folds not observable in the field is examined. The observed variation in the attitude of first phase folds could also have resulted from large scale inhomogeneities of strain.

1 “Torrens Group” is used in place of the “Torrensian Series” of Mawson and Sprigg (1950) at the suggestion of Daily (1963) since the Torrensian Series has an unwarranted time significance.

2 The scale of folds follows that of Weiss (1957). Macroscopic‐folds larger than a single outcrop. Mesoscopic‐folds on the scale of a hand specimen or single outcrop. Microscopic‐folds on the scale of a thin section.  相似文献   
212.
The pegmatite complex of epi‐Permian age at Bismuth near Torrington, N.S.W., consists of an elongated intrusion of a granitoid quartz‐topaz rock (silexite) together with a series of pegmatites of varying composition. The principal pegmatite consists of orthoclase, biotite, quartz and beryl with concentric zoning passing outwards into fine‐grained biotite‐beryl rock containing a number of ore minerals: arsenides of Co, Fe and Ni, wolframite, bismuth, bismuthinite, molybdenite, joseite, cassiterite, rutile, uraninite and monazite. Small pegmatite veins issuing from this main body contain, in addition to the silicate minerals, high temperature tetrahedrite, chalcopyrite and sphalerite. A second group is characterised by quartz, orthoclase and beryl with occasional patches of tourmaline.

Emplacement at no great depth is indicated by breccia veins and stock‐works filled with pegmatite.

The origin of a silica hydromagma is considered in terms of existing experimental work and in terms of field occurrence. Structural evidence suggests that the quartzose intrusion preceded the injection of the pegmatite fluids, both being derived from the parent Mole biotite granite.  相似文献   
213.
Forty‐four tremors which occurred in the Snowy Mountains of New South Wales during the years 1958–1962 have been accurately located, using a network of seismic stations operating in that area. The largest of these were a tremor of magnitude 5 north of Berridale in May, 1959, and one of magnitude 4 near Rock Flat in September, 1958. Fault plane analysis suggests that the former was caused by a high‐angle thrust movement along the plane of the Crackenback Fault, while the latter may be associated with the Murrumbidgee Fault. These conclusions are supported by macroseismic data.

Twenty‐one minor shocks occurred in the vicinity of the Berridale tremor, and their strain release pattern is that of an after‐shock sequence. It is believed that they were produced as a result of secondary strains imposed by the original motion along an edge of the faulted block. The first motion data for these shocks is consistent with the hypothesis that the associated movements were transcurrent.

With the decrease of activity in the Berridale region, tremors became more or less random in the Snowy Mountains. The strain release curve obtained for these movements suggests a gradual rebuilding of the stress field following the Berridale shock.  相似文献   
214.
The Princhester Serpentinite of the Marlborough terrane of the northern New England Orogen is a remnant of upper mantle peridotite that was partially melted at an oceanic spreading centre at 562 Ma, and subsequently interacted with Late Devonian island arc basalts in an intra-oceanic supra-subduction zone (SSZ) setting. The full range of rare-earth element (REE) contents, including U-shaped patterns, can be explained by a single process of reaction of partially melted, depleted peridotite with Late Devonian calc-alkaline and island arc tholeiite magmas by equilibrium porous flow, fractionating the REE by a chromatographic column effect. The Northumberland Serpentinite on South Island of the Percy Group has similar REE and high field strength element (HFSE) contents to the most depleted samples of the Princhester Serpentinite, supporting a common origin. However, spinel compositions suggest that the Northumberland Serpentinite interacted with boninitic magmas. The REE and mineral geochemistry indicates that the Princhester and Northumberland Serpentinites both represent part of the mantle component of a disrupted SSZ ophiolite. The ophiolite is considered to have formed above an east-dipping subduction zone, based on the geochemistry of Devonian island arc basalts between Mt Morgan and Monto, which include compositions identical to dykes and gabbroic blocks within the Princhester Serpentinite. Blockage of the subduction zone by collision with the Australian continent during the Late Devonian led to slab breakoff and the reversal of subduction direction, trapping the Late Devonian ophiolite in a forearc position. Its location, in a forearc setting above a growing accretionary wedge, conforms to the definition of a Cordilleran-type ophiolite. This interpretation is consistent with current views that most ophiolites are formed from young, hot and thin oceanic lithosphere at forearc, intra-arc and backarc spreading centres in a SSZ setting, and that emplacement follows genesis by 10 million years or less. Late Devonian crustal growth may have been widespread in the New England Orogen, because the disrupted ophiolite assemblage of the Yarras complex in the southern New England Orogen is probably of this age. Extensional tectonism at the end of the Carboniferous dismembered the Princhester – Northumberland ophiolite, removed the crustal section, and produced windows of accretionary wedge rocks within the fragmented ophiolite. The Princhester Serpentinite, together with fault slices of metasedimentary rocks, was thrust westward as a flat sheet over folded strata of the Yarrol Forearc Basin by a Late Permian out-of-sequence thrust during the Hunter – Bowen Orogeny, completing the emplacement of the Marlborough terrane. The Princhester and Northumberland Serpentinites could have been displaced by strike-slip movement along the Stanage Fault Zone or an equivalent structure. There is no record in the northern New England Orogen of SSZ ophiolites and volcanic arc deposits of Cambrian age, as exposed along the Peel Fault. Partial melting of the Princhester Serpentinite at an oceanic spreading centre at 562 Ma, recorded by mafic intrusives displaying N-MORB chemistry, was an earlier event that was outboard of any Early Paleozoic subduction zone along the margin of the Australian continent, and cannot be regarded as representing the early history of the New England Orogen. It is possible that the formation of intra-oceanic arcs in latest Silurian and Devonian time was the first tectonic event common to both the southern and northern New England Orogen.  相似文献   
215.
SHRIMP U–Pb geochronology and monazite EPMA chemical dating from the southeast Gawler Craton has constrained the timing of high-grade reworking of the Early Paleoproterozoic (ca 2450 Ma) Sleaford Complex during the Paleoproterozoic Kimban Orogeny. SHRIMP monazite geochronology from mylonitic and migmatitic high-strain zones that deform the ca 2450 Ma peraluminous granites indicates that they formed at 1725 ± 2 and 1721 ± 3 Ma. These are within error of EPMA monazite chemical ages of the same high-strain zones which range between 1736 and 1691 Ma. SHRIMP dating of titanite from peak metamorphic (1000 MPa at 730°C) mafic assemblages gives ages of 1712 ± 8 and 1708 ± 12 Ma. The post-peak evolution is constrained by partial to complete replacement of garnet–clinopyroxene-bearing mafic assemblages by hornblende–plagioclase symplectites, which record conditions of ~600 MPa at 700°C, implying a steeply decompressional exhumation path. The timing of Paleoproterozoic reworking corresponds to widespread deformation along the eastern margin of the Gawler Craton and the development of the Kalinjala Shear Zone.  相似文献   
216.
Detrital zircon U–Pb LAM-ICPMS age patterns for sandstones from the mid-Permian –Triassic part (Rakaia Terrane) of the accretionary wedge forming the Torlesse Composite Terrane in Otago, New Zealand, and from the early Permian Nambucca Block of the New England Orogen, eastern Australia, constrain the development of the early Gondwana margin. In Otago, the Triassic Torlesse samples have a major (64%), younger group of Permian–Early Triassic age components at ca 280, 255 and 240 Ma, and a minor (30%) older age group with a Precambrian–early Paleozoic range (ca 1000, 600 and 500 Ma). In Permian sandstones nearby, the younger, Late Permian age components are diminished (30%) with respect to the older Precambrian–early Paleozoic age group, which now also contains major (50%) and unusual Carboniferous age components at ca 350–330 Ma. Sandstones from the Nambucca Block, an early Permian extensional basin in the southern New England Orogen, follow the Torlesse pattern: the youngest. Early Permian age components are minor (<20%) and the overall age patterns are dominated (40%) by Carboniferous age components (ca 350–320 Ma). These latter zircons are inherited from either the adjacent Devonian–Carboniferous accretionary wedge (e.g. Texas-Woolomin and Coffs Harbour Blocks) or the forearc basin (Tamworth Belt) farther to the west, in which volcaniclastic-dominated sandstone units have very similar pre-Permian (principally Carboniferous) age components. This gradual variation in age patterns from Devonian–late Carboniferous time in Australia to Late Permian–mid-Cretaceous time in New Zealand suggests an evolutionary model for the Eastern Gondwanaland plate margin and the repositioning of its subduction zone. (1) A Devonian to Carboniferous accretionary wedge in the New England Orogen developing at a (present-day) Queensland position until late in the Carboniferous. (2) Early Permian outboard repositioning of the primary, magmatic arc allowing formation of extensional basins throughout the New England Orogen. (3) Early to mid-Permian translocation of the accretionary wedge and more inboard active-margin elements, southwards to their present position. This was accompanied by oroclinal bending which allowed the initiation of a new, late Permian to Early Triassic accretionary wedge (eventually the Torlesse Composite Terrane of New Zealand) in an offshore Queensland position. (4) Jurassic–Cretaceous development of this accretionary wedge offshore, in northern Zealandia, with southwards translation of the various constituent terranes of the Torlesse Composite Terrane to their present New Zealand position.  相似文献   
217.
Abstract

The diverse geological and geophysical data sets compiled, interrogated and interpreted for the largely undercover southern Thomson Orogen region reveal a Paleozoic terrane dominated by deformed metasedimentary rocks intruded by S- and I-type granites. An interpretive basement geology map and synthesis of geochronological constraints allow definition of several stratigraphic packages. The oldest and most widespread comprises upper Cambrian to Lower Ordovician metasedimentary rocks deposited during the vast extensional Larapinta Event with maximum depositional ages of ca 520 to ca 496 Ma. These units correlate with elements of the northern Thomson Orogen, Warburton Basin and Amadeus Basin. The degree of deformation and metamorphism of these rocks varies across the region. A second major package includes Lower to Middle Devonian volcanic and sedimentary units, some of which correlate with components of the Lachlan Orogen. The region also includes a Middle to Upper Ordovician package of metasedimentary rocks and a Devonian or younger package of intermediate volcaniclastic rocks of restricted extent. Intrusive units range from diatremes and relatively small layered mafic bodies to batholithic-scale suites of granite and granodiorite. S-type and I-type intrusions are both present, and ages range from Ordovician to Triassic, but late Silurian intrusions are the most abundant. Two broad belts of intrusions are recognised. In the east, the Scalby Belt comprises relatively young (Upper Devonian) intrusions, while in the west, the Ella Belt is dominated by intrusions of late Silurian age within a curvilinear, broadly east–west trend. The stratigraphic distributions, characteristics and constraints defined by this interpretive basement mapping provide a basic framework for ongoing research and mineral exploration.  相似文献   
218.
Abstract

The upper Cambrian Yancannia Formation is a small and isolated basement exposure situated in the southern Thomson Orogen, northwestern New South Wales. Understanding the geology of the Yancannia Formation is important, as it offers a rare glimpse of the composition and structure of the mostly covered basement rocks of the southern Thomson Orogen. It consists of deformed fine-grained, lithic-rich, turbiditic metasediments, suggesting deposition in a proximal, low-energy deep-marine environment. A 497 ± 13 Ma U–Pb detrital zircon date provides its maximum depositional age, the same as previously published for a tuff horizon in a correlative unit. Analysis of sedimentological, geochronological and geophysical data confirms the Yancannia Formation belongs to the Warratta Group. The Warratta Group exhibits many similarities to the Teltawongee Group in the adjacent Delamerian Orogen, including similar provenance, sedimentology and deep-water turbiditic depositional environment. Additionally, there is no sedimentological evidence for deposition of the Warratta Group following the ca 500 Ma Delamerian Orogeny, which suggests that the Warratta Group is syn-Delamerian. However, no geochronological or structural evidence for Delamerian orogenesis was observed in the Warratta Group, suggesting that the group was either unaffected by Delamerian orogenesis, or that no conclusive record remains. The provenance signature of the Warratta Group also bears strong similarities with the upper Cambrian Stawell Zone Saint Arnaud Group in the western Lachlan Orogen. Units east of Yancannia have similar provenance signatures to the Lower Ordovician Girilambone Group of the Lachlan Orogen, suggesting equivalents exist in the southern Thomson Orogen. These are likely to be the Thomson beds, deposited in a deep-marine setting outboard of the Delamerian continental margin. Structural analysis from a ~10 km, semi-continuous, across-strike section indicates a major, kilometre-scale, upright, shallow northwest-trending, doubly plunging anticline dominates the Yancannia region. This D1 structure was associated with tight-to-isoclinal folding, penetrative cleavage and abundant quartz veining of probable Benambran age. Later dextral transpressional deformation (D2) produced a sporadic, weak cleavage and dextral faulting, possibly of Bindian age. Major south-directed thrusting (D3) on the adjacent Olepoloko Fault occurred in the early Carboniferous and appears to pre-date a later deformation event (D4), which was associated with kink folding.  相似文献   
219.
The New England Orogen in eastern Australia is characterised by orogenic-scale curvatures (oroclines). The largest and most prominent curvature in this system is the Texas Orocline, but its subsurface geometry is still poorly constrained. A large component of the orocline is covered by post-oroclinal sedimentary rocks, which obscure deeper sections of the orocline and make it difficult to understand how the structure is connected to other segments of the New England Orogen. Here, we present geophysical data that elucidate the structure of the Texas Orocline below the sedimentary cover. Using 2D seismic, aeromagnetic TMI (total magnetic intensity) and Bouguer gravity datasets, in combination with outcrop and well data, we identified the depth to the New England ‘basement’ and significant faults intersecting it. We also traced the strongly contorted subsurface continuation of the Peel-Yarrol Fault System, which is characterised by local gravity and magnetic anomalies associated with isolated serpentinite outcrops. Constraints on the timing of oroclinal bending were obtained from the interpretation of seismic transects, which showed that early Permian sedimentary rocks of the Bowen Basin were deposited in a subtrough that deviates from the general north–south trend of the Bowen Basin. The subtrough is oriented approximately parallel to the western limb of the Texas Orocline, thus suggesting that the orocline formed during and/or after early Permian rifting. Our analysis indicates that initial bending occurred contemporaneously with the development of the early Permian rift basins, most likely in the backarc region of a retreating subduction zone. Subsequently, phases of strike-slip and contractional deformation have further tightened the pre-existing curvatures.  相似文献   
220.
The Owen Stanley Fault Zone (OSFZ) is the low-angle thrust boundary between the Australian and Woodlark plates. The eastern extension of the OSFZ links with the Woodlark Basin spreading centre. Recent tectonic models of eastern Papua depict the OSFZ boundary passing through the Mt Suckling district, with the Keveri Fault a key component. Gravity data clearly show that the OSFZ and the Papuan Ultramafic Belt (PUB) pass north of Mt Suckling. Tectonised mafic and ultramafic rocks of the Mt Suckling district, previously referred to the PUB, are reassigned to the Awariobo Range Complex (new name). Extensive pillow basalts previously referred to the middle Eocene part of the Kutu Volcanics at the top of the PUB sequence are, in the map area, reassigned on lithological and biostratigraphic grounds to the late Oligocene–middle Miocene Wavera Volcanics. The detailed work reported here indicates that the Keveri Fault is unrelated to the OSFZ with no evidence for thrusting along the structure. The area's tectonic history has been dominated by large vertical displacements along the Keveri Fault. The commencement of late Miocene buoyant uplift of the Suckling Dome (new name), related to granite intrusion into thick crust of the eastern Papua region, marks the inception of the Keveri Fault and coincides with the initiation of Woodlark rifting. The fault facilitated much of the rapid vertical movement of the dome, with an estimated 8000 m of uplift (2.5 m/103 a) since the late Miocene. Movement on the Keveri Fault is notably different from structures flanking other metamorphic core complexes in eastern Papua. There is no field evidence for the development of a low-angle, south-dipping detachment fault along the southern margin of the Suckling Dome. The Suckling Dome is the westernmost of the eastern Papua domes, localised within a broad extensional zone that continues to propagate westward along the OSFZ plate boundary.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号