首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   282篇
  免费   31篇
  国内免费   158篇
地球物理   16篇
地质学   450篇
海洋学   1篇
综合类   1篇
自然地理   3篇
  2024年   5篇
  2023年   8篇
  2022年   18篇
  2021年   12篇
  2020年   30篇
  2019年   31篇
  2018年   15篇
  2017年   37篇
  2016年   19篇
  2015年   11篇
  2014年   17篇
  2013年   85篇
  2012年   26篇
  2011年   17篇
  2010年   8篇
  2009年   16篇
  2008年   18篇
  2007年   21篇
  2006年   14篇
  2005年   7篇
  2004年   13篇
  2003年   6篇
  2002年   7篇
  2001年   4篇
  2000年   2篇
  1999年   5篇
  1998年   7篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1984年   1篇
  1983年   1篇
  1973年   1篇
  1954年   1篇
排序方式: 共有471条查询结果,搜索用时 0 毫秒
201.
太华变质杂岩广泛出露于华北克拉通南缘,总体呈SW-NE向展布.在河南洛宁地区,太华变质杂岩以TTG片麻岩、斜长角闪片麻岩和变泥质片麻岩为主.斜长角闪片麻岩中可识别出三个阶段的变质矿物组合:进变质阶段矿物组合(M1)为石榴子石变斑晶内部的包裹体矿物组合( Amp1+ Pl1+Qtz),变质高峰期矿物组合(M2)为石榴子石变斑晶边部和基质矿物组合( Grt2+ Amp2+ Pl2+ Qtz),退变质阶段矿物组合(M3)为“白眼圈”状后成合晶组合(Amp3+ Pl3+ Qtz).运用矿物温度计与压力计估算三个阶段的P-T条件分别为:进变质阶段约600 ~ 680℃/7.0~ 7.6kbar,变质高峰期为680 ~ 790℃/9.5 ~10.7kbar,退变质阶段为580~720℃/6.5 ~7.6kbar.变泥质片麻岩中保留了进变质阶段(M1)包裹体矿物组合(Bt1+Pl1+Qtz)和峰期变质阶段(M2)矿物组合(Grt2 +Bt2+Pl2 +Qtz)两个阶段.其中未发现后期退变质反应结构,石榴子石中也未发现成分环带.P-T条件估算结果分别为:M1阶段620 ~ 710℃/4.9 ~5.6kbar,M2阶段710~760℃/7.3~8.3kbar.洛宁地区太华变质杂岩记录了顺时针的近等温降压型的P-T轨迹,可能经历了与华北中部造山带其它杂岩类似的变质演化过程,推测其形成于华北克拉通东部陆块和西部陆块沿中部造山带的拼合过程中.SIMS与ICP-MS锆石U-Pb定年表明,斜长角闪片麻岩记录了1938~1967Ma的变质事件,比华北中部造山带其它变质杂岩区所广泛记录的~1850Ma变质事件早了约100Ma,暗示中部造山带的拼合可能是一个长期的、复杂的过程.  相似文献   
202.
兴蒙造山带是中国一条重要的成矿带.通过近几年的调查研究,以及大量人力、物力和资金投入,在该区发现了一批大、中型钼矿床,但是钼矿产出的区域地质背景还不是很清楚.对该区中生代A型花岗岩类、地质图分析以及钼矿的研究得知:(1)研究区印支期和燕山期是两个独立的造山旋回,印支期造山在220~200Ma左右结束,以区域上发育一套碱...  相似文献   
203.
The Shabaosi deposit is the only large lode gold deposit in the northern Great Xing'an Range. The gold ore bodies are hosted by sandstone and siltstone of the Middle Jurassic Ershi'erzhan Formation, and are controlled by three N–S‐trending altered fracture zones. The gold ore bodies are composed of auriferous quartz veinlets and altered rocks. Fluid inclusion studies indicate that the ore‐forming fluids belong to a H2O–NaCl–CO2–CH4 system, with salinities between 0.83 and 8.28 wt% NaCl eq., and homogenization temperatures ranging from 180 to 320 °C. The δ34S values of sulphides show a large variation from −16.9‰ to 8.5‰. The Pb isotope compositions of sulphides are characterized by a narrow range of ratios: 18.289 to 18.517 for 206Pb/204Pb, 15.548 to 15.625 for 207Pb/204Pb, and 38.149 to 38.509 for 208Pb/204Pb. The μ values range from 9.36 to 9.51. These results suggest that the ore‐forming fluids/materials were mainly of magmatic hydrothermal origin, derived from magmas produced by partial melting of the lower crust. The 40Ar/39Ar age of auriferous quartz veinlets from the Shabaosi gold deposit is about 130 Ma. The Shabaosi gold deposit has counterparts in similar orogenic gold deposits, and was formed during the post‐collisional setting of the Mongolia–Okhotsk Orogen. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
204.
The early stages of southern Apennine development have been unraveled by integrating the available stratigraphic record provided by synorogenic strata (of both foredeep and wedge-top basin environments) with new structural data on the Liguride accretionary wedge cropping out in the Cilento area, southern Italy. Our results indicate that the final oceanic subduction stages and early deformation of the distal part of the Apulian continental margin were controlled by dominant NW–SE shortening. Early Miocene subduction-accretion, subsequent wedge emplacement on top of the Apulian continental margin and onset of footwall imbrication involving detached Apulian continental margin carbonate successions were followed by extensional deformation of the previously ‘obducted’ accretionary wedge. Wedge thinning also enhanced the development of accommodation space, filled by the dominantly siliciclastic Cilento Group deposits. The accretionary wedge units and the unconformably overlying wedge-top basin sediments experienced renewed NW–SE shortening immediately following the deposition of the Cilento Group (reaching the early Tortonian), confirming that the preceding wedge thinning represented an episode of synorogenic extension occurring within the general framework of NW–SE convergence. The documented Early to the Late Miocene steps of southern Apennine development are clearly distinct with respect to the subsequent (late Tortonian-Quaternary) stages of fold and thrust belt evolution coeval with Tyrrhenian back-arc extension, which were characterized by NE-directed thrusting in the southern Apennines.  相似文献   
205.
Rocks of Upper Precambrian age near Adelaide show evidence of two or more phases of deformation. The first phase has resulted in concentric and similar folds with an associated slaty cleavage. Structures of this phase are overprinted by folds with associated crenulation cleavage. Minor occurrences of later kink folds are also observed. The hypothesis that the first phase folds overprint very large folds not observable in the field is examined. The observed variation in the attitude of first phase folds could also have resulted from large scale inhomogeneities of strain.

1 “Torrens Group” is used in place of the “Torrensian Series” of Mawson and Sprigg (1950) at the suggestion of Daily (1963) since the Torrensian Series has an unwarranted time significance.

2 The scale of folds follows that of Weiss (1957). Macroscopic‐folds larger than a single outcrop. Mesoscopic‐folds on the scale of a hand specimen or single outcrop. Microscopic‐folds on the scale of a thin section.  相似文献   
206.
The pegmatite complex of epi‐Permian age at Bismuth near Torrington, N.S.W., consists of an elongated intrusion of a granitoid quartz‐topaz rock (silexite) together with a series of pegmatites of varying composition. The principal pegmatite consists of orthoclase, biotite, quartz and beryl with concentric zoning passing outwards into fine‐grained biotite‐beryl rock containing a number of ore minerals: arsenides of Co, Fe and Ni, wolframite, bismuth, bismuthinite, molybdenite, joseite, cassiterite, rutile, uraninite and monazite. Small pegmatite veins issuing from this main body contain, in addition to the silicate minerals, high temperature tetrahedrite, chalcopyrite and sphalerite. A second group is characterised by quartz, orthoclase and beryl with occasional patches of tourmaline.

Emplacement at no great depth is indicated by breccia veins and stock‐works filled with pegmatite.

The origin of a silica hydromagma is considered in terms of existing experimental work and in terms of field occurrence. Structural evidence suggests that the quartzose intrusion preceded the injection of the pegmatite fluids, both being derived from the parent Mole biotite granite.  相似文献   
207.
Forty‐four tremors which occurred in the Snowy Mountains of New South Wales during the years 1958–1962 have been accurately located, using a network of seismic stations operating in that area. The largest of these were a tremor of magnitude 5 north of Berridale in May, 1959, and one of magnitude 4 near Rock Flat in September, 1958. Fault plane analysis suggests that the former was caused by a high‐angle thrust movement along the plane of the Crackenback Fault, while the latter may be associated with the Murrumbidgee Fault. These conclusions are supported by macroseismic data.

Twenty‐one minor shocks occurred in the vicinity of the Berridale tremor, and their strain release pattern is that of an after‐shock sequence. It is believed that they were produced as a result of secondary strains imposed by the original motion along an edge of the faulted block. The first motion data for these shocks is consistent with the hypothesis that the associated movements were transcurrent.

With the decrease of activity in the Berridale region, tremors became more or less random in the Snowy Mountains. The strain release curve obtained for these movements suggests a gradual rebuilding of the stress field following the Berridale shock.  相似文献   
208.
The Princhester Serpentinite of the Marlborough terrane of the northern New England Orogen is a remnant of upper mantle peridotite that was partially melted at an oceanic spreading centre at 562 Ma, and subsequently interacted with Late Devonian island arc basalts in an intra-oceanic supra-subduction zone (SSZ) setting. The full range of rare-earth element (REE) contents, including U-shaped patterns, can be explained by a single process of reaction of partially melted, depleted peridotite with Late Devonian calc-alkaline and island arc tholeiite magmas by equilibrium porous flow, fractionating the REE by a chromatographic column effect. The Northumberland Serpentinite on South Island of the Percy Group has similar REE and high field strength element (HFSE) contents to the most depleted samples of the Princhester Serpentinite, supporting a common origin. However, spinel compositions suggest that the Northumberland Serpentinite interacted with boninitic magmas. The REE and mineral geochemistry indicates that the Princhester and Northumberland Serpentinites both represent part of the mantle component of a disrupted SSZ ophiolite. The ophiolite is considered to have formed above an east-dipping subduction zone, based on the geochemistry of Devonian island arc basalts between Mt Morgan and Monto, which include compositions identical to dykes and gabbroic blocks within the Princhester Serpentinite. Blockage of the subduction zone by collision with the Australian continent during the Late Devonian led to slab breakoff and the reversal of subduction direction, trapping the Late Devonian ophiolite in a forearc position. Its location, in a forearc setting above a growing accretionary wedge, conforms to the definition of a Cordilleran-type ophiolite. This interpretation is consistent with current views that most ophiolites are formed from young, hot and thin oceanic lithosphere at forearc, intra-arc and backarc spreading centres in a SSZ setting, and that emplacement follows genesis by 10 million years or less. Late Devonian crustal growth may have been widespread in the New England Orogen, because the disrupted ophiolite assemblage of the Yarras complex in the southern New England Orogen is probably of this age. Extensional tectonism at the end of the Carboniferous dismembered the Princhester – Northumberland ophiolite, removed the crustal section, and produced windows of accretionary wedge rocks within the fragmented ophiolite. The Princhester Serpentinite, together with fault slices of metasedimentary rocks, was thrust westward as a flat sheet over folded strata of the Yarrol Forearc Basin by a Late Permian out-of-sequence thrust during the Hunter – Bowen Orogeny, completing the emplacement of the Marlborough terrane. The Princhester and Northumberland Serpentinites could have been displaced by strike-slip movement along the Stanage Fault Zone or an equivalent structure. There is no record in the northern New England Orogen of SSZ ophiolites and volcanic arc deposits of Cambrian age, as exposed along the Peel Fault. Partial melting of the Princhester Serpentinite at an oceanic spreading centre at 562 Ma, recorded by mafic intrusives displaying N-MORB chemistry, was an earlier event that was outboard of any Early Paleozoic subduction zone along the margin of the Australian continent, and cannot be regarded as representing the early history of the New England Orogen. It is possible that the formation of intra-oceanic arcs in latest Silurian and Devonian time was the first tectonic event common to both the southern and northern New England Orogen.  相似文献   
209.
SHRIMP U–Pb geochronology and monazite EPMA chemical dating from the southeast Gawler Craton has constrained the timing of high-grade reworking of the Early Paleoproterozoic (ca 2450 Ma) Sleaford Complex during the Paleoproterozoic Kimban Orogeny. SHRIMP monazite geochronology from mylonitic and migmatitic high-strain zones that deform the ca 2450 Ma peraluminous granites indicates that they formed at 1725 ± 2 and 1721 ± 3 Ma. These are within error of EPMA monazite chemical ages of the same high-strain zones which range between 1736 and 1691 Ma. SHRIMP dating of titanite from peak metamorphic (1000 MPa at 730°C) mafic assemblages gives ages of 1712 ± 8 and 1708 ± 12 Ma. The post-peak evolution is constrained by partial to complete replacement of garnet–clinopyroxene-bearing mafic assemblages by hornblende–plagioclase symplectites, which record conditions of ~600 MPa at 700°C, implying a steeply decompressional exhumation path. The timing of Paleoproterozoic reworking corresponds to widespread deformation along the eastern margin of the Gawler Craton and the development of the Kalinjala Shear Zone.  相似文献   
210.
Detrital zircon U–Pb LAM-ICPMS age patterns for sandstones from the mid-Permian –Triassic part (Rakaia Terrane) of the accretionary wedge forming the Torlesse Composite Terrane in Otago, New Zealand, and from the early Permian Nambucca Block of the New England Orogen, eastern Australia, constrain the development of the early Gondwana margin. In Otago, the Triassic Torlesse samples have a major (64%), younger group of Permian–Early Triassic age components at ca 280, 255 and 240 Ma, and a minor (30%) older age group with a Precambrian–early Paleozoic range (ca 1000, 600 and 500 Ma). In Permian sandstones nearby, the younger, Late Permian age components are diminished (30%) with respect to the older Precambrian–early Paleozoic age group, which now also contains major (50%) and unusual Carboniferous age components at ca 350–330 Ma. Sandstones from the Nambucca Block, an early Permian extensional basin in the southern New England Orogen, follow the Torlesse pattern: the youngest. Early Permian age components are minor (<20%) and the overall age patterns are dominated (40%) by Carboniferous age components (ca 350–320 Ma). These latter zircons are inherited from either the adjacent Devonian–Carboniferous accretionary wedge (e.g. Texas-Woolomin and Coffs Harbour Blocks) or the forearc basin (Tamworth Belt) farther to the west, in which volcaniclastic-dominated sandstone units have very similar pre-Permian (principally Carboniferous) age components. This gradual variation in age patterns from Devonian–late Carboniferous time in Australia to Late Permian–mid-Cretaceous time in New Zealand suggests an evolutionary model for the Eastern Gondwanaland plate margin and the repositioning of its subduction zone. (1) A Devonian to Carboniferous accretionary wedge in the New England Orogen developing at a (present-day) Queensland position until late in the Carboniferous. (2) Early Permian outboard repositioning of the primary, magmatic arc allowing formation of extensional basins throughout the New England Orogen. (3) Early to mid-Permian translocation of the accretionary wedge and more inboard active-margin elements, southwards to their present position. This was accompanied by oroclinal bending which allowed the initiation of a new, late Permian to Early Triassic accretionary wedge (eventually the Torlesse Composite Terrane of New Zealand) in an offshore Queensland position. (4) Jurassic–Cretaceous development of this accretionary wedge offshore, in northern Zealandia, with southwards translation of the various constituent terranes of the Torlesse Composite Terrane to their present New Zealand position.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号