首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   187篇
  免费   28篇
  国内免费   17篇
测绘学   71篇
大气科学   36篇
地球物理   54篇
地质学   26篇
海洋学   10篇
天文学   2篇
综合类   13篇
自然地理   20篇
  2022年   4篇
  2021年   3篇
  2020年   1篇
  2019年   4篇
  2018年   2篇
  2017年   6篇
  2016年   9篇
  2015年   5篇
  2014年   18篇
  2013年   18篇
  2012年   9篇
  2011年   12篇
  2010年   11篇
  2009年   15篇
  2008年   14篇
  2007年   10篇
  2006年   11篇
  2005年   6篇
  2004年   8篇
  2003年   4篇
  2002年   7篇
  2001年   7篇
  2000年   4篇
  1999年   6篇
  1998年   6篇
  1997年   9篇
  1996年   4篇
  1995年   3篇
  1994年   2篇
  1993年   5篇
  1992年   1篇
  1991年   1篇
  1988年   2篇
  1987年   2篇
  1980年   2篇
  1954年   1篇
排序方式: 共有232条查询结果,搜索用时 687 毫秒
41.
The recent free availability of Landsat historical data provides new potentials for land-cover change studies. Multi-temporal studies require a previous radiometric and geometric homogenization of input images, to better identify true changes. Topographic normalization is one of the key steps to create consistent and radiometricly stable multi-temporal time series, since terrain shadows change throughout time. This paper aims to evaluate different methods for topographic correction of Landsat TM-ETM+ data. They were assessed for 15 ETM+ images taken under different illumination conditions, using two criteria: (a) reduction of the standard deviation (SD) for different land-covers and (b) increase in temporal stability of a time series for individual pixels. We observed that results improve when land-cover classes where processed independently when applying the more advanced correction algorithms such as the C-correction and the Minnaert correction. Best results were obtaining for the C-correction and the empiric–statistic correction. Decreases of the SD for bare soil pixels were larger than 100% for the C-correction and the empiric–statistic correction method compared to the other correction methods in the visible spectrum and larger than 50% in the IR region. In almost all tests the empiric–statistic method provided better results than the C-correction. When analyzing the multi-temporal stability, pixels under bad illumination conditions (northern orientation) improved after correction, while a deterioration was observed for pixels under good illumination conditions (southern orientation). Taken this observation into account, a simple but robust method for topographic correction of Landsat imagery is proposed.  相似文献   
42.
The effect of topography on moss vegetation is examined to clarify the processes that affect the colonization of polar deserts on continental Antarctica. Data on the presence of the mosses Bryum pseudotriquetrum and Pottia heimii, and relative altitude were recorded. The altitude measurements were used to infer the underlying topographical attributes of the substrate in the study plots. Specifically, the local distribution of moss plants was clarified using the topographical attributes to construct generalized linear mixed models (GLMMs). The models suggested that steep slopes and convex microhabitats within areas of concave general relief (at the plot scale 4 × 4 m) promoted the establishment of moss. This correspondence to general relief was more apparent for B. pseudotriquetrum than for P. heimii. Among the study plots, general relief was found to be an important determinant of the precise spatial distribution of B. pseudotriquetrum. The standard surface estimated using the robust methods presented in this study is shown to be more accurate for describing moss distribution than the prevailing least-squares method.  相似文献   
43.
Most ground-penetrating radar (GPR) measurements are performed on nearly flat areas. If strongly dipping reflections and/or diffractions are present in the GPR data, a classical migration-processing step is needed in order to determine the geometries of shallow structures. Nevertheless, a standard migration routine is not suitable for GPR data collected on areas showing a variable and large topographic relief. To take into account topographic variations, the GPR data are, in general, corrected by applying static shifts instead of using an appropriate topographic migration that would place the reflectors at their correct locations with the right dip angle. In this article, we present an overview of Kirchhoff's migration and show the importance of topographic migration in the case where the depth of the target structures is of the same order as the relief variations. Examples of synthetic and real GPR data are shown to illustrate the efficiency of the topographic migration.  相似文献   
44.
 Four different implementations of Stokes' formula are employed for the estimation of geoid heights over Sweden: the Vincent and Marsh (1974) model with the high-degree reference gravity field but no kernel modifications; modified Wong and Gore (1969) and Molodenskii et al. (1962) models, which use a high-degree reference gravity field and modification of Stokes' kernel; and a least-squares (LS) spectral weighting proposed by Sj?berg (1991). Classical topographic correction formulae are improved to consider long-wavelength contributions. The effect of a Bouguer shell is also included in the formulae, which is neglected in classical formulae due to planar approximation. The gravimetric geoid is compared with global positioning system (GPS)-levelling-derived geoid heights at 23 Swedish Permanent GPS Network SWEPOS stations distributed over Sweden. The LS method is in best agreement, with a 10.1-cm mean and ±5.5-cm standard deviation in the differences between gravimetric and GPS geoid heights. The gravimetric geoid was also fitted to the GPS-levelling-derived geoid using a four-parameter transformation model. The results after fitting also show the best consistency for the LS method, with the standard deviation of differences reduced to ±1.1 cm. For comparison, the NKG96 geoid yields a 17-cm mean and ±8-cm standard deviation of agreement with the same SWEPOS stations. After four-parameter fitting to the GPS stations, the standard deviation reduces to ±6.1 cm for the NKG96 geoid. It is concluded that the new corrections in this study improve the accuracy of the geoid. The final geoid heights range from 17.22 to 43.62 m with a mean value of 29.01 m. The standard errors of the computed geoid heights, through a simple error propagation of standard errors of mean anomalies, are also computed. They range from ±7.02 to ±13.05 cm. The global root-mean-square error of the LS model is the other estimation of the accuracy of the final geoid, and is computed to be ±28.6 cm. Received: 15 September 1999 / Accepted: 6 November 2000  相似文献   
45.
Based on previous research results on river re-distribution models, a modification on the effects of topographic slopes for a runoff parameterization was proposed and implemented to the NCAR's land sur face model (LSM). This modification has two aspects: firstly, the topographic slopes cause outflows from higher topography and inflows into the lower topography points; secondly, topographic slopes also cause decrease of infiltration at higher topography and increases of infiltration at lower topography. Then changes in infiltration result in changes in soil moisture, surface fluxes and then in surface temperature, and eventual ly in the upper atmosphere and the climate. This mechanism is very clearly demonstrated in the point bud gets analysis at the Andes Mountains vicinities. Analysis from a regional scale perspective in the Mackenzie GEWEX Study (MAGS) area, the focus of the ongoing Canadian GEWEX program, shows that the modi fied runoff parameterization does bring significant changes in the regional surface climate. More important ly, detailed analysis from a global perspective shows many encouraging improvements introduced by the modified LSM over the original model in simulating basic atmospheric climate properties such as thermodynamic features (temperature and humidity). All of these improvements in the atmospheric climate simulation illustrate that the inclusion of topographic effects in the LSM can force the AGCM to produce a more realistic model climate.  相似文献   
46.
LINTRODUCTIONDisastersofdebrisflotvoccurfrequentlyinChina.Mostofthemareinrainstormtype.TherainStormdebrisflowiscausedbyStormrainfallthatinducesastrongStreamflowsonloosematerialsinwatershed.Theeffectsofprecipitationonthedebrisflowareasfollows(ChengduResearchInstituteC;DisasterandEnvironment,1989)f(l)Precipitationacceleratesthematerialsofloosedebristogather,(2)PrecipitationsuPPlywatercomponentofdebrisflow,(3)Precipitationprovidesdynamicconditionsfordebrisflow,(4)Precipitationisatrigg…  相似文献   
47.
本文就海湾战争,结合我国国情,联想我军测绘保障的建设谈了为适应高科技战争的要求应采取的几项措施,即:抓好动态的测绘保障,进行测绘保障体制的调整,开展未来战场的研究。其中还特别强调要抓好三件事:①加速我军测绘数据库的建立,不断提高数据测绘产品的生产能力;②加强地形分析方法和手段的研究;③加强快速定位保障的研究等。  相似文献   
48.
This study documents the stratigraphic evolution of the Castagnola ponded turbidite mini-basin through analysis of a detailed base-to-top section measured in the central part of the basin. Vertical variations in facies characteristics, thickness ratio of mud cap vs. sandstone of event beds and net/gross are argued to be good proxies for pinpointing the stratigraphic transition from dominantly ponded deposition, where most of the flow is trapped by the confining topography, to a flow-stripping – dominated phase in which an increasingly large part of incoming flows can escape the basin by spilling over the enclosing topography. Thickness statistics of sandstones and mud caps of event beds from the case study show that in the initial stage of turbidite deposition only part of the mud of exceptionally large volume flows escaped the confining topography; as the basin was progressively infilled, nearly all inbound flows were affected by flow stripping, with part of the sand and most of the mud escaping the basin. In the latest recorded stage of deposition the abundance of by-pass features coupled with significant modification of the sandstone bed thickness population suggests that the turbidite system was no longer obstructed frontally, and could step forward onto a healed topography. In order to assess whether the documented trends of turbidite bed characteristics indicative of the ‘fill to spill’ transition could be recognised from wireline log data alone, synthetic logs were prepared by up-scaling the field data to resolutions typical of borehole geophysical log data. Vertical trends of average bed thickness and net/gross recognisable in the synthetic data suggest that the transition from ponded to spill-dominated situations should be resolvable in geophysical log data.  相似文献   
49.
Winter precipitation over Central Asia and the western Tibetan Plateau (CAWTP) is mainly a result of the interaction between the westerly circulation and the high mountains around the plateau. Empirical Orthogonal Functions (EOFs), Singular Value Decomposition (SVD), linear regression and composite analysis were used to analyze winter daily precipitation and other meteorological elements in this region from 1979 to 2013, in order to understand how interactions between the regional circulation and topography affect the intraseasonal variability in precipitation. The SVD analysis shows that the winter daily precipitation variability distribution is characterized by a dipole pattern with opposite signs over the northern Pamir Plateau and over the Karakoram Himalaya, similar to the second mode of EOF analysis. This dipole pattern of precipitation anomaly is associated with local anomalies in both the 700 hPa moisture transport and the 500 hPa geopotential height and is probably caused by oscillations in the regional and large-scale circulations, which can influence the westerly disturbance tracks and water vapor transport. The linear regression shows that the anomalous mid-tropospheric circulation over CAWTP corresponds to an anti-phase variation of the 500 hPa geopotential height anomalies over the southern and northern North Atlantic 10 days earlier (at 95% significance level), that bears a similarity to the North Atlantic Oscillation (NAO). The composite analysis reveals that the NAO impacts the downstream regions including CAWTP by controlling south-north two branches of the middle latitude westerly circulation around the Eurasian border. During the positive phases of the NAO, the northern branch of the westerly circulation goes around the northwest Tibetan Plateau, whereas the southern branch encounters the southwest Tibetan Plateau, which leads to reduced precipitation over the northern Pamir Plateau and increased precipitation over the Karakoram Himalaya, and vice versa.  相似文献   
50.
Different pixel-based, object-based and subpixel-based methods such as time-series analysis, decision-tree, and different supervised approaches have been proposed to conduct land use/cover classification. However, despite their proven advantages in small dataset tests, their performance is variable and less satisfactory while dealing with large datasets, particularly, for regional-scale mapping with high resolution data due to the complexity and diversity in landscapes and land cover patterns, and the unacceptably long processing time. The objective of this paper is to demonstrate the comparatively highest performance of an operational approach based on integration of multisource information ensuring high mapping accuracy in large areas with acceptable processing time. The information used includes phenologically contrasted multiseasonal and multispectral bands, vegetation index, land surface temperature, and topographic features. The performance of different conventional and machine learning classifiers namely Malahanobis Distance (MD), Maximum Likelihood (ML), Artificial Neural Networks (ANNs), Support Vector Machines (SVMs) and Random Forests (RFs) was compared using the same datasets in the same IDL (Interactive Data Language) environment. An Eastern Mediterranean area with complex landscape and steep climate gradients was selected to test and develop the operational approach. The results showed that SVMs and RFs classifiers produced most accurate mapping at local-scale (up to 96.85% in Overall Accuracy), but were very time-consuming in whole-scene classification (more than five days per scene) whereas ML fulfilled the task rapidly (about 10 min per scene) with satisfying accuracy (94.2–96.4%). Thus, the approach composed of integration of seasonally contrasted multisource data and sampling at subclass level followed by a ML classification is a suitable candidate to become an operational and effective regional land cover mapping method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号