首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   697篇
  免费   194篇
  国内免费   109篇
测绘学   5篇
大气科学   2篇
地球物理   178篇
地质学   659篇
海洋学   47篇
天文学   3篇
综合类   31篇
自然地理   75篇
  2024年   3篇
  2023年   10篇
  2022年   13篇
  2021年   29篇
  2020年   33篇
  2019年   31篇
  2018年   28篇
  2017年   31篇
  2016年   40篇
  2015年   39篇
  2014年   32篇
  2013年   56篇
  2012年   53篇
  2011年   48篇
  2010年   49篇
  2009年   44篇
  2008年   45篇
  2007年   39篇
  2006年   29篇
  2005年   42篇
  2004年   28篇
  2003年   38篇
  2002年   21篇
  2001年   32篇
  2000年   26篇
  1999年   25篇
  1998年   23篇
  1997年   19篇
  1996年   16篇
  1995年   17篇
  1994年   20篇
  1993年   8篇
  1992年   2篇
  1991年   5篇
  1990年   5篇
  1989年   4篇
  1988年   6篇
  1986年   4篇
  1985年   2篇
  1984年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有1000条查询结果,搜索用时 468 毫秒
861.
Ichnofabrics are applied in concert with sedimentological data to discriminate sub-environments within a Campanian deep-sea fan system in the Norwegian Sea. Seven ichnofabric types are recognised in the studied cores, which correspond to specific architectural elements of the fan system, including amalgamated channels, lobate sand sheets, proximal and distal overbank, fan fringe, and hemipelagic basin plain environments. A unique observation is an ultra-deep Chondrites ichnofabric, interpreted to result from the activity of a chemosymbiotic tracemaker, possibly utilising hydrothermal vents or hydrocarbon seeps in the near vicinity of an active rift system. Mapping and inter-well correlation of ichnofabrics allow a better control of lateral and vertical facies changes, which are important to exploration and production strategies. This study demonstrates that ichnofabric analysis is proving to be a valuable tool for the characterisation and prediction of reservoir quality, the recognition of potential flow barriers and prediction of lateral depositional trends in deep-sea fan deposits.  相似文献   
862.
Models to explain alluvial system development in rift settings commonly depict fans that are sourced directly from catchments formed in newly uplifted footwalls, which leads to the development of steep-sided talus-cone fans in the actively subsiding basin depocentre. The impact of basin evolution on antecedent drainage networks orientated close to perpendicular to a rift axis, and flowing over the developing hangingwall dip slope, remains relatively poorly understood. The aim of this study is to better understand the responses to rift margin uplift and subsequent intrabasinal fault development in determining sedimentation patterns in alluvial deposits of a major antecedent drainage system. Field-acquired data from a coarse-grained alluvial syn-rift succession in the western Gulf of Corinth, Greece (sedimentological logging and mapping) has allowed analysis of the spatial distribution of facies associations, stratigraphic architectural elements and patterns of palaeoflow. During the earliest rifting phase, newly uplifted footwalls redirected a previously established fluvial system with predominantly southward drainage. Footwall uplift on the southern basin margin at an initially relatively slow rate led to the development of an overfilled basin, within which an alluvial fan prograded to the south-west, south and south-east over a hangingwall dip slope. Deposition of the alluvial system sourced from the north coincided with the establishment of small-scale alluvial fans sourced from the newly uplifted footwall in the south. Deposits of non-cohesive debris flows close to the proposed hangingwall fan apex pass gradationally downstream into predominantly bedload conglomerate deposits indicative of sedimentation via hyperconcentrated flows laden with sand- and silt-grade sediment. Subsequent normal faulting in the hangingwall resulted in the establishment of further barriers to stream drainage, blocking flow routes to the south. This culminated in the termination of sediment supply to the basin depocentre from the north, and the onset of underfilled basin conditions as signified by an associated lacustrine transgression. The evolution of the fluvial system described in this study records transitions between three possible end-member types of interaction between active rifting and antecedent drainage systems: (a) erosion through an uplifted footwall, (b) drainage diversion away from an uplifted footwall and (c) deposition over the hangingwall dip slope. The orientation of antecedent drainage pathways at a high angle to the trend of a developing rift axis, replete with intrabasinal faulting, exerts a primary control on the timing and location of development of overfilled and underfilled basin states in evolving depocentres.  相似文献   
863.
Accommodation space in the unconfined distal part of low‐gradient fluvial fans facilitates abundant floodplain deposition. Here, the development of crevasse splays plays a key role in the aggradation of alluvial ridges and subsequent river avulsion. This study presents an analysis of different stages in the evolution of crevasse splays based on observations made in the modern‐day Río Colorado dryland fluvial fan fringing the endorheic Altiplano Basin in Bolivia. A generic life cycle is proposed in which crevasse‐splay channels adjust towards a graded equilibrium profile with their lower‐lying distal termini acting as a local base level. Initial development is dominantly controlled by the outflow of floodwater, promoting erosion near the crevasse apex and deposition towards the splay fringes. When proximal incision advances to below the maximum level of floodplain inundation, return flow occurs during the waning stage of flooding. This floodwater reflux leads to a temporary repositioning of the local base level to the deeper trunk‐channel thalweg at the apex of the crevasse‐splay channels. The resultant decrease in the floodplainward gradient of these channels ultimately leads to backfilling and abandonment of the crevasse splay, leaving a subtle local elevation of the floodplain. Consecutive splays form an alluvial ridge through lateral amalgamation and subsequent vertical stacking, which is mirrored by the aggradation of their parent channel floor. As this alluvial ridge becomes increasingly perched above the surrounding floodplain, splay equilibration may cause incision of the levee crevasse down to or below its trunk channel thalweg, leading to an avulsion. The mechanisms proposed in this study are relevant to fluvial settings promoting progradational avulsions. The relatively rapid accumulation rate and high preservation potential of crevasse splays in this setting makes them an important constituent of the resultant fluvial stratigraphy, amongst which are hydrocarbon‐bearing successions. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   
864.
白云凹陷位于南海北部陆缘深水地带,是我国深水油气资源勘探的重要地区。开展重-震成像研究,是分析该区烃源岩分布特征、大型构造圈闭、成藏层系与储层条件的重要方法。本文通过重力异常、地震Vs波速结构模型及地震勘探剖面分析,获得研究区自由空间重力异常、布格重力异常、水平和垂向梯度、密度反演图像、Vs波速度结构图像以及高分辨率地震勘探剖面图像。重力图像揭示:白云凹陷中心的强负值异常图像与较厚沉积和基底起伏有关;凹陷东侧相对高正值局部重力圈闭与中生代残余地层有关;凹陷北侧条带状正异常则与陆坡向洋盆过渡时基底下凹有关。白云凹陷的主凹陷和南凹陷存在明显的层状负剩余密度或相对低密度区,是有利的含油气层位。地震图像揭示:白云凹陷由北向南存在明显的细颈化带、外缘隆起带、洋陆过渡带等结构。在陆缘地壳强烈伸展薄化期间,白云凹陷形成大型三角洲-湖相烃源岩沉积环境的凹陷结构,沉积物源主体来自北侧。随着地壳强烈减薄的细颈化,凹陷出现明显的台阶式沉陷,导致陆架坡折带由南向北迁移,形成陆架边缘三角洲、深水重力流水道和深水扇等有利的储层。高分辨率地震资料获取的地震勘探剖面图像上,可以识别出许多浅层气运移通道,表明白云凹陷丰富的中、浅层气大多来源于深部地层。   相似文献   
865.
Mountain ranges are frequently subjected to mass wasting events triggered by storms or earthquakes and supply large volumes of sediment into river networks. Besides altering river dynamics, large sediment deliveries to alluvial fans are known to cause hydro‐sedimentary hazards such as flooding and river avulsion. Here we explore how the sediment supply history affects hydro‐sedimentary river and fan hazards, and how well can it be predicted given the uncertainties on boundary conditions. We use the 2D morphodynamic model Eros with a new 2D hydrodynamic model driven by a sequence of flood, a sediment entrainment/transport/deposition model and a bank erosion law. We first evaluate the model against a natural case: the 1999 Mount Adams rock avalanche and subsequent avulsion on the Poerua river fan (West Coast, New Zealand). By adjusting for the unknown sediment supply history, Eros predicts the evolution of the alluvial riverbed during the first post‐landslide stages within 30 cm. The model is subsequently used to infer how the sediment supply volume and rate control the fan aggradation patterns and associated hazards. Our results show that the total injected volume controls the overall levels of aggradation, but supply rates have a major control on the location of preferential deposition, avulsion and increased flooding risk. Fan re‐incision following exhaustion of the landslide‐derived sediment supply leads to sediment transfer and deposition downstream and poses similar, but delayed, hydro‐sedimentary hazards. Our results demonstrate that 2D morphodynamics models are able to capture the full range of hazards occurring in alluvial fans including river avulsion aggradation and floods. However, only ensemble simulations accounting for uncertainties in boundary conditions (e.g., discharge history, initial topography, grain size) as well as model realization (e.g., non‐linearities in hydro‐sedimentary processes) can be used to produce probabilistic hazards maps relevant for decision making. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
866.
Alluvial fans that are in the process of development always show complex geomorphic features due to natural modification. Accordingly, analyzing these fans whether to be influenced by tectonic deformation is one of the technique difficulties in active tectonic studies. Complex alluvial fans are the focus of the study of active tectonics such as fracture mapping and activity behavior analysis, for they have often retained important structural information. Traditional measurement methods, such as satellite remote sensing, RTK GPS and Lidar, are difficult to meet the demand for the study of micro tectonic deformation because of the reason of accuracy or cost performance. The recent UAV photogrammetry technology, due to its many advantages such as low cost, high resolution, and efficiency of exporting DEM and DOM data, has been widely used in three-dimensional modeling, ground mapping and other fields. In the quantitative study of active tectonics, this technology fills up the deficiency in the research of the micro structure of the traditional measurement. Through detailed field investigations and paleoseismic trenching, we further used this technology to obtain the topographic data of a complex alluvial fan located at the southern marginal fault of Barkol Basin, Xinjiang. Pointing at the alluvial fans that are in the process of development, and on the basis of topographic analysis and image processing for DEM, we take the research method of secondary partitions of the geomorphic surface and cut the alluvial fans longitudinally according to the difference of its age. Through the establishment of profile cluster within each partition, separate analysis and data contrast with the adjacent partitions, we acquired the tectonic activity information during the development of alluvial fan. The tectonic vertical deformation of this alluvial fan is about 2.5m.  相似文献   
867.
通过对东营凹陷史南地区沙二9砂层组的小层精细对比和微相细分,可以将梁家楼水下扇扇中亚相进一步划分出辫状水道、辫状砂坝、“边滩”、侧缘砂坝、侧缘分支沟道、末端砂坝、冲溢扇、低阶地、高阶地等9个微相。不同微相之间的砂体粒度变化、平面发育位置都有明显的不同,尤其是其中的辫状砂坝、“边滩”、侧缘砂坝是在水下地形较平坦,坡度较小的情况下,由辫状沟道侧向迁移形成的。对水下扇扇中亚相的微相细分和重新厘定,不仅有助于对水下扇沉积过程的进一步了解,而且也将有助于油田对水下扇砂体剩余油的分布研究和开发方案的调整。   相似文献   
868.
Construction of managed aquifer recharge structures(MARS)to store floodwater is a common strategy for storing depleted groundwater resources in arid and semi-arid regions,as part of integrated water resources management(IWRM).MARS divert surface water to groundwater,but this can affect downstream fluvial processes.The impact of MARS on fluvial processes was investigated in this study by combining remote sensing techniques with hydro-sediment modeling for the case of the Kaboutar-Ali-Chay aquifer,northwestern Iran.The impact of MARS on groundwater dynamics was assessed,sedimentation across the MARS was modeled using a 2D hydrodynamic model,and morphological changes were quantified in the human-impacted alluvial fan using Landsat time series data and statistical methods.Changes were detected by comparing data for the periods before(1985e1996)and after(1997 e2018)MARS construction.The results showed that the rate of groundwater depletion decreased from 2.14 m/yr before to 0.86 m/yr after MARS construction.Hydro-sediment modeling revealed that MARS ponds slowed water outflow,resulting in a severe decrease in sediment load which lead to a change from sediment deposition to sediment erosion in the alluvial fan.Morphometric analyses revealed decreasing alluvial fan area and indicated significant differences(p<0.01)between pre-and post-impact periods for different morphometric parameters analyzed.The rate of change in area of the Kaboutar-Ali-Chay alluvial fan changed from0.228 to0.115 km2/year between pre-and post-impact periods.  相似文献   
869.
A marginal marine carbonate environment, giving away to an alluvial one, was established during Messinian time on Alonnisos Island, the footwall upland of the Southern Marginal Fault of the Sporades Basin (SMFS). Analysis of the evolving depositional systems, with emphasis on their sedimentation processes, faulting patterns and palaeopedological factors, has permitted an interpretation of the simultaneous controls of tectonism and climate. The carbonate sediments were deposited in a shallow marine environment formed along a faulted continental margin under warm and semi-arid climatic conditions. Faulting consisted of NE-trending dextral reverse faults and NW-trending strike slip faults, produced by WNW-directed compression. The basement structural elements affected the spatial distribution of the offshore and shoreface facies, whereas fifth-order cycles of sea-level change were responsible for the development of metre-scale, shallowing-up cycles. The compressional structures were subsequently reactivated by NNE extension. This tectonic inversion, together with a global sea-level fall, triggered alluvial fan sedimentation. Fan sedimentation was disrupted by long periods of non-deposition and soil formation under warm climatic conditions. Three distinct units are recognized in the fan: a lower unit consisting of clast-poor debris flows, attributed to semi-arid–humid periods; an intermediate unit of clast-rich sheetfloods and channel flows, deposited during arid periods; and an upper unit consisting of matrix-rich sheetfloods related to a return to semi-arid–humid conditions. We interpret that the water-flow processes responsible for deposition were most prevalent on fans of arid and semi-arid climates, whereas debris-flow processes were more typical of climates with higher rainfall. As the extension proceeded during the Plio-Quaternary time, the main tectonic activity of the Sporades Basin was taken up by the SMFS causing significant footwall uplift. Due to this process, Alonnisos Island was elevated above the Pliocene highstand and became an area starved of Quaternary sedimentation. Copyright © 1998 John Wiley & Sons, Ltd.  相似文献   
870.
黑龙江省三江盆地鹤岗凹陷下白垩统猴石沟组沉积特征   总被引:1,自引:0,他引:1  
笔者等通过对鹤岗凹陷北部露头和钻孔资料的综合利用,结合少量的样品分析及薄片鉴定工作,对研究区下白垩统猴石沟组主要岩石学特征、沉积相类型及展布特征进行了综合研究,在此基础上,以砂岩型铀矿成矿理论为指导,对猴石沟组有利成矿砂体的沉积相类型进行了初步讨论。认为①猴石沟组砂体以长石岩屑砂岩和岩屑砂岩为主,主要为陆相淡水沉积环境,具较高的还原容量;②研究区内猴石沟组主要为扇三角洲沉积环境,并划分为辫状河道、漫滩沼泽、水下分流河道、河口坝、席状砂和分流间湾等6种微相;③猴石沟组沉辫状河道砂体可作为寻找潜水氧化带型砂岩型铀矿的重点类型,而水下分流河道砂体是作为寻找层间氧化带型砂岩型铀矿的主攻类型。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号