首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   167篇
  免费   35篇
  国内免费   32篇
大气科学   1篇
地球物理   34篇
地质学   168篇
海洋学   23篇
综合类   5篇
自然地理   3篇
  2023年   2篇
  2022年   1篇
  2021年   5篇
  2020年   5篇
  2019年   5篇
  2018年   7篇
  2017年   6篇
  2016年   13篇
  2015年   9篇
  2014年   14篇
  2013年   14篇
  2012年   11篇
  2011年   7篇
  2010年   10篇
  2009年   14篇
  2008年   11篇
  2007年   8篇
  2006年   14篇
  2005年   6篇
  2004年   5篇
  2003年   7篇
  2002年   7篇
  2001年   2篇
  2000年   5篇
  1999年   5篇
  1998年   4篇
  1997年   10篇
  1996年   5篇
  1995年   1篇
  1994年   4篇
  1993年   3篇
  1991年   6篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
排序方式: 共有234条查询结果,搜索用时 62 毫秒
101.
嘉黎—迫隆藏布构造混杂岩带的基本特征   总被引:1,自引:0,他引:1       下载免费PDF全文
嘉黎—迫隆藏布构造混杂岩带实质上是一个多类型、多体制、多级别 ,但有成生联系的构造形迹及构造夹块组成的复杂构造体系 ,露头几何学特征为高角度逆冲断层 ,蛇绿杂岩混杂堆积 ,剖面上为大规模的逆冲岩片和剪切岩块的定向排列 ,具有逆冲推覆—右行走滑的构造运动学演化。  相似文献   
102.
The footwall gneisses beneath the western part of the Paleoarchean (3.8 Ga) Isua Greenstone Belt, southern West Greenland, are interpreted here in terms of a 3.64 Ga stack of mylonitic crystalline thrust-nappes, the oldest example known on Earth. In present coordinates, the kinematic history of the thrust-nappe stack is couched in terms of initial longitudinal (strike-parallel) thrusting towards the southwest, followed by transverse thrusting to the northwest, and subsequent extensional collapse of the thickened crust toward the southeast.Diorite and tonalite that form the western margin of granitoids, structurally overlying the western part of the Isua Greenstone Belt and its footwall, contain 3.5 Ga mafic dykes, some of which are deformed and/or truncated at fault contacts within the granitoids. Accordingly, a component of the deformation structurally above the Isua Greenstone Belt occurred after 3.5 Ga, significantly later than the formation of the underlying mylonitic nappes, probably during the Neoarchean.The structural regime of mylonitic thrust-nappe stacking is very similar to that in modern mountain belts. It would appear that the deformational behaviour, rheological constitution and overall strength of Paleoarchean and modern continental crust were similar.  相似文献   
103.
Gravity and magnetic data of the Kachchh basin and surrounding regions have delineated major E–W and NW–SE oriented lineaments and faults, which are even extending up to plate boundaries in the north Arabian Sea and western boundary of the Indian plate, respectively. The epicentral zone of Bhuj earthquake and its aftershocks is located over the junction of Rann of Kachchh and median uplifts viz. Kachchh mainland and Wagad uplifts, which are separated by thrust faults. Gravity data with constraints from the results of the seismic studies along a profile suggest that the basement is uplifted towards the north along thrust faults dipping 40–60° south. Similarly gravity and magnetic modeling along a profile across Wagad uplift suggest south dipping (50–60°) basement contacts separating rocks of high susceptibility and density towards the north. One of these contacts coincides with the fault plane of the Bhuj earthquake as inferred from seismological studies and its projection on the surface coincides with the E–W oriented north Wagad thrust fault. A circular gravity high in contact with the fault in northern part of the Wagad uplift along with high amplitude magnetic anomaly suggests plug type mafic intrusive in this region. Several such gravity anomalies are observed over the island belt in the Rann of Kachchh indicating their association with mafic intrusions. The contact of these intrusives with the country rock demarcates shallow crustal inhomogeneities, which provides excellent sites for the accumulation of regional stress. A regional gravity anomaly map based on the concept of isostasy presents two centers of gravity lows of −11 to −13 mGal (10−5 m/s2) representing mass deficiency in the epicentral region. Their best-fit model constrained from the receiver function analysis and seismic refraction studies suggest crustal root of 7–8 km (deep crustal inhomogeneity) under them for a standard density contrast of −400 kg/m3. It is, therefore, suggested that significant amount of stress get concentrated in this region due to (a) buoyant crustal root, (b) regional stress due to plate tectonic forces, and (c) mafic intrusives as stress concentrators and the same might be responsible for the frequent and large magnitude earthquakes in this region including the Bhuj earthquake of January 26, 2001.  相似文献   
104.
造山带断片型地层层序恢复实例剖析   总被引:11,自引:2,他引:11       下载免费PDF全文
冯庆来  方念乔 《地质科学》1997,32(3):318-326
南皮河组和怕拍组分布于昌宁一孟连带西缘的耿马、沧源、澜沧地区,前人将其分别划归晚二叠世和早三叠世。新的研究表明,它们不是连续地层,而是由多个地层断片组成。通过逐个地层断片研究,恢复了该区被动陆缘的地层序列。在此基础上,重新进行地层划分,厘定了弄巴组、南皮河组和怕拍组。进而探讨了该被动陆缘的演化历史。  相似文献   
105.
Structural geological field work, microscopic and magnetic fabric studies have been applied in order to assess the structural origin of a gneiss dome, based on a regional example from the Neoproterozoic Pan-African Belt of NE Africa, the Wadi Hafafit Culmination (WHC). The culmination is dominated by a number of major shear zones, which form both the boundaries between the gneissic core and surrounding low grade successions as well as those of minor structural units within the gneisses. These shear zones form a linked fault system, which, based on shear criteria, fault-bend fold and overall geometric interrelationships, can be classified as an antiformal stack. The relative age sequence of the shear zones/thrusts with the highest thrust oldest and the lowermost youngest points to a forward-propagating thrust system. This, together with the shear criteria, exclude an origin of the WHC as a metamorphic core complex, where the highest shear zone should be youngest. The geometry of the WHC antiformal stack is documented by maps and sections as well as section balancing and restoration. Microscopic work showed brittle deformation in feldspar and dynamic recrystallization in quartz ribbons. The asymmetry of the fabric confirmed the macroscopically determined shear sense. However, there is one example of an earlier, perhaps extensional shear movement. Mylonitic foliation and transport-parallel lineation have also been determined by magnetic fabric studies. The observations suggest that thrusts may cut across both previously folded crystalline rocks as well as homogeneous granitoid plutonic bodies. According to the regional tectonic picture the large-scale structure of the gneiss dome originated after a phase of (late-orogenic) extensional collapse. It is speculated that during late-orogenic cooling the upper part of the lithosphere was sufficiently strong to allow brittle thrusting whilst the lithosphere as a whole was still weak enough to allow large-scale compressional deformation, perhaps in a transitional stage from lateorogenic to intra-cratonic deformation.  相似文献   
106.
Normal faults on mesoscopic scale are observed in the Panjal Thrust Zone in the Dalhousie area of western Htmachal. The boundary between the southern margin of the Higher Himalaya Crystalline (HHC) of Zanskar and the Chamba syncline sequence is also described as a normal fault, referred to as Bhadarwah Normal Fault in the Bhadarwah area of Doda district on the basis of field mapping and shear sense criteria using S-C fabric and porphyroblast rotation. The occurrence of these normal faults suggests that the extensional tectonic regime was not restricted only to the Zanskar shear zone area but that it also occurs south of the Higher Himalayan range. This suggests NE-directed subhorizontal extension and exhumation of deeper level rocks of Higher Himalaya Crystallines.  相似文献   
107.
ABSTRACT South of the Main Mantle Thrust in north Pakistan, rocks of the northern edge of the Indian plate were deformed and metamorphosed during the main southward thrusting phase of the Himalayan orogeny. In the Hazara region, between the Indus and Kaghan Valleys, metamorphic grade increases northwards from chlorite zone to sillimanite zone rocks in a typically Barrovian sequence. Metamorphism was largely synchronous with early phases of the deformation. The metamorphic rocks were subsequently imbricated by late north-dipping thrusts, each with higher grade rocks in the hanging wall than in the footwall, such that the metamorphic profile shows an overall tectonic inversion. The rocks of the Hazara region form one of a number of internally imbricated metamorphic blocks stacked, after the metamorphic peak, on top of each other during the late thrusting. This imbrication and stacking represents an early period of post-Himalayan uplift.  相似文献   
108.
Depositional geometries and distribution patterns of shelf sediment wedges mainly derived from small rivers located in the northern margin of the Alboran Sea, Western Mediterranean Basin, are reported in this study, in order to understand: (1) their generation under particular physiographic and climatic conditions of river basins; (2) the interaction of shallow-water wedges with submarine valleys. A high amount of data has been used in this study, including river discharge and wave climate data, multibeam bathymetry, high-resolution seismic profiles and surficial sediment samples.The eastern shelf of the study area comprises the prodeltaic wedge off the Guadalfeo River and its eastward continuation, interrupted by the deeply indented Carchuna Canyon head. In contrast, the western shelf receives the contributions of a smaller river, the Verde River, whose associated prodeltaic wedge is limited to the inner shelf. Morphological features of both prodeltas are similar and differ from other Mediterranean prodeltaic bodies, resembling fan deltas. Those similarities include very steep foresets and bottomsets, very shallow and close to the coast offlap break, coarse sediment composition, lobate shape and common occurrence of crenulated sea floor. All these features point out to an origin linked to the activity of high-density sediment flows, rapid sedimentation and limited lateral redistribution. Those processes are favoured by the existence of an abrupt onshore physiography, a regional climate with a marked seasonality that conditioned torrential fluvial regimes and high availability of loose sand and gravel.Shelf sediment by-pass is a likely process during the Holocene in the eastern shelf, as suggested by the identification of two types of submarine valleys: (1) numerous gullies occur from the distal toe of the Guadalfeo River prodelta to the slope; (2) submarine canyon heads affect to the Holocene sedimentary wedge in the eastern sector of the study area. In the western shelf, however, the influence of shelf sedimentation processes on deeper domains is minimal, due to shelf widening, prevalence of relict features and absence of submarine valleys.  相似文献   
109.
The present study investigates the factors associated with the occurrence of landslides along with the National Highway (NH 39) connecting Assam-Manipur (India) to Myanmar. Kinematics and slope stability analyses were used to gain an understanding of the causes of slope failure despite the terrain comprising material with a high safety factor. The study area falls within a high seismic zone along the regional Churachandpur-Mao Thrust (CMT) situated west of the Indo-Myanmar subduction zone. Based on these studies of seismicity, slip rates, creeping, among others, it was inferred that CMT is a creeping regional fault running parallel to the subduction zone boundary creeping segment of CMT and that the CMT requires further monitoring to assess the landslide hazard in the region.  相似文献   
110.
管树巍 《地质科学》2018,(1):221-241
利用天然地震环境噪声成像研究柴达木盆地及邻区的岩石圈结构,利用工业地震剖面研究新生代构造变形的几何学与运动学特征,在此基础上讨论柴达木盆地新生代的成盆动力学过程与演化。柴达木盆地及邻区的岩石圈表现出向南和向北挠曲的特征。其中,东昆仑-可可西里地区地壳深度30~40 km 的低速层向北抬升,可与柴达木盆地内部深度15 km 左右的低速区相连接,反映了东昆仑-祁漫塔格山向柴达木盆地的逆冲推覆作用,因此在岩石圈尺度上,柴达木新生代成盆动力学过程与前陆盆地是相似的,表现为构造负荷引起的挠曲沉降。柴达木盆地新生代构造变形受控于柴西南和柴北缘两期冲断系统,柴北缘冲断系统形成于古新世-始新世路乐河-下干柴沟期,主要记录于祁连山山前、阿尔金山山前北段及冷湖和鄂博梁深层;柴西南冲断系统形成于早中新世下油砂山期以来,现今盆地南部的北西向构造带和盆地北部的冷湖和鄂博梁浅层构造都属于这期冲断系统。由于柴西南冲断系统的前锋构造已扩展至柴达木盆地北缘,并受到阿尔金山和祁连山的阻挡,缺少稳定的台盆区,因而使得柴达木盆地新生界不发育前陆盆地特有的楔状沉积结构。柴西南和柴北缘两期冲断系统的叠加,不仅使得柴达木新生代构造变形在时间和空间上呈现有次序的分布,也使得新生代盆地呈现出开启到封闭的演化格局,从而对新生界油气生成和聚集产生了重要影响。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号