首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   221篇
  免费   33篇
  国内免费   78篇
测绘学   2篇
大气科学   18篇
地球物理   32篇
地质学   223篇
天文学   1篇
综合类   18篇
自然地理   38篇
  2024年   2篇
  2023年   3篇
  2022年   6篇
  2021年   12篇
  2020年   13篇
  2019年   8篇
  2018年   6篇
  2017年   10篇
  2016年   8篇
  2015年   6篇
  2014年   12篇
  2013年   23篇
  2012年   14篇
  2011年   15篇
  2010年   16篇
  2009年   21篇
  2008年   14篇
  2007年   22篇
  2006年   21篇
  2005年   17篇
  2004年   13篇
  2003年   8篇
  2002年   7篇
  2001年   7篇
  2000年   16篇
  1999年   8篇
  1998年   1篇
  1997年   4篇
  1996年   4篇
  1995年   4篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
排序方式: 共有332条查询结果,搜索用时 15 毫秒
41.
Magnitude calibration of north Indian earthquakes   总被引:13,自引:0,他引:13  
  相似文献   
42.
为了研究喜马拉雅山北坡冬季大气气溶胶化学组分、光学特征及来源,2017年11—12月在珠穆朗玛峰站(QOMS)共采集22个PM2.5样品.结果显示:PM2.5中包括水溶性离子(WSIs)、有机质(OM)、元素碳(EC)在内的所有检测成分,总质量浓度为(3.36±1.06)μg·m-3;有机碳(OC)、元素碳(EC)和水...  相似文献   
43.
Wang Ninglian    Yao Tandong    Pu Jianchen    Tian Lide    Duan Keqin    L.G.Thompson    M.E.Davis  WT  ”BX 《地学前缘》2000,(Z1)
INDIAN MONSOON SIGNALS REFLECTED BY THE RATIO OF Cl~- TO Na~ IN DASUOPU ICE CORE FROM XIXIABANGMA,HIMALAYAStheChineseNationalBasicResearchProgramme (GrantG19980 4 0 80 0 )andChineseNationalScienceFoun dation (NSFgrant 4 980 10 0 4 )  相似文献   
44.
喜马拉雅中段高压麻粒岩变质作用、地球化学与年代学   总被引:2,自引:7,他引:2  
研究的高压麻粒岩发现于西藏亚东以北约40公里的(Zherger-La)、出露在藏南拆离系(STDS)主构造面下盘的高喜马拉雅结晶岩系中,是继喜马拉雅东西构造结的Nanga Barbat、Namjag Barwa和喜马拉雅中段Khatra & Marina地区、定结地区发现的榴辉岩或高压麻粒岩之后,在青藏高原上新近发现的高压麻粒岩.该麻粒岩呈岩片被包裹于花岗质片麻岩中.麻粒岩记录了两期变质作用,早期矿物组合为Grt+Cpx+Pl+Qz,属麻粒岩相变质产物,矿物成分分析显示早期矿物组合达到了平衡,并且没有表现成分扩散;后期矿物组合为Hbl+Pl+Bio或Opx+Pl,指示了较高温但相对压力较低的麻粒岩相退变变质作用,矿物成分分析和结构显示了退变作用没有达到变质平衡.显微结构可以观察到多组变质反应Grt+Cpx+Qtz=Opx+Pl,Grt+Qtz=Opx+Pl,Grt+Cpx+L=Hbl+Pl+Bio+Mt,和Cpx+L=Hbl+Mt.根据矿物平衡关系,利用Grt-Cpx温度计和Grt-Cpx-Pl-Qz压力计估算的早期变质作用温压为T=780~850℃,P=12~15kbar,相对应的地温梯度16℃~18℃/km.借用Hbl-Pl温度计和A1tot in Hbl压力计估算的晚期变质作用温压为T=730~760℃;P=4~6kbar,相当的地温梯度为38℃~50℃/km.变质作用P-T演化呈等温降压轨迹,指示麻粒岩地体从增厚(或俯冲)地壳到减薄增温(或部分熔融)地壳,进而被快速剥露地表的构造过程.初步的地球化学结果表明高压麻粒岩原岩可能相当于大陆拉斑玄武岩.麻粒岩锆石SHRIMP年代学有两组相对集中的年龄分别为98±5 Ma(5 spots)和17.0±0.3 Ma(13 spots).高压麻粒岩的两期变质作用的温度都在700℃以上,略高于锆石U-Pb同位素体系计时封闭温度,推断17 Ma是高压麻粒岩变质后发生折返,随高喜马拉雅结晶岩系剥露冷却的年龄;98.4Ma的测年结果被推测是高压麻粒岩原岩形成的年龄.在喜马拉雅山,高压麻粒岩记录了类似增厚地壳到减薄地壳的转变一方面可能是地壳深部作用机制的转变,另一方面,这种机制与喜马拉雅南坡巨大的降雨量和去顶作用有密切关系,意义重大.  相似文献   
45.
堤坝稳定性是评价冰湖溃决危险性的重要指标, 而堤坝的温度特征与其稳定性密切相关. 基于2012年11月-2013年9月对西藏定结县龙巴萨巴湖冰碛坝的0~150 cm不同深度的温度观测数据, 分析冰碛坝地温变化特征及其影响. 结果显示: 冰碛坝表层(<20 cm)地温与气温变化一致, 温度日变化常出现白天为正温梯度而夜间为负温度梯度的特征, 全年日均梯度一般为负温梯度(上部温度高、下部温度低); 中层(20~100 cm)和深层(>100 cm)表现为冬季下层温度高于上层温度的正温梯度, 夏季下层温度低于上层的负温梯度逐渐加强, 但地温日变幅逐渐减弱; 中间层地温变化不到气温变化幅度的1/5~1/10; 深层地温无明显的日变化. 冰碛坝的消融率约为2.1 cm·d-1, 夏季消融深度超过250 cm. 现有夏季消融深度对堤坝的稳定影响有限, 但是湖盆区如果持续升温, 冰碛坝冻土的年消融率和消融深度都将增大, 致使堤坝稳定性下降, 溃决风险增大.  相似文献   
46.
错那洞穹隆位于特提斯喜马拉雅东段,发育钨锡-铍稀有金属成矿作用。错那洞穹隆由上(边部)、中(幔部)、下(核部)3个构造层组成,分别以上、下拆离断层为分界线,其中在幔部强变形带中发育一套同构造变形的含绿柱石花岗伟晶岩。锆石U-Pb年代学表明,该套伟晶岩形成于33.7±0.4Ma(MSWD=1.12),为早渐新世岩浆活动的产物,明显早于穹隆中目前发现的淡色花岗岩(20~14Ma)。岩石地球化学和Sr-Nd-Hf同位素测试结果显示:(1)错那洞早渐新世花岗伟晶岩为过铝质高钾富钠花岗质岩石,具有较高SiO2(>69.74%)、高Al2O3(>14.58%)及较低的CaO、MgO、MnO、TiO2的特征;(2)高场强元素及大离子亲石元素均呈现高度变化特征,富集轻稀土元素,亏损重稀土元素;(3)Sr同位素初始值(0.696308~0.751604)与Nd同位素初始值(-11.48~-12.05)总体在角闪岩与泥质片麻岩之间,εHf(t)值介于-5.4~0.1之间(主要集中在-5.4~-1.8)。综合研究表明,错那洞早渐新世含绿柱石伟晶岩是角闪岩与泥质片麻岩混熔的结果,其中泥质片麻岩的部分熔融起主导作用,其形成与藏南拆离系(STDS)的活动密切相关,表明错那洞地区新生代地壳深熔作用主要源岩在早渐新世已完成了从角闪岩向泥质片麻岩的转变。该同构造变形含绿柱石伟晶岩的发现,揭示错那洞穹隆的成穹作用至少在早渐新世便已开始。铍稀有金属可能在早渐新世已有了初始富集,而在中新世大规模岩浆活动中实现了巨量富集。  相似文献   
47.
The spatial and temporal variation of major ions (Ca2+, Mg2+, Na+, K+, , , and Cl) in Himalayan snow and ice is investigated by using two snow pits from the East Rongbuk glacier (28°01′N, 86°58′E, 6500 m a.s.l.), one snow pit from the Nangpai Gosum glacier (28°03′N, 86°39′E, 5700 m a.s.l.), one snow pit from the Gyabrag glacier (28°11′N, 86°38′E, 6303 m a.s.l.), and three ice cores from the Sentik (35°59′N, 75°58′E, 4908 m a.s.l.), Dasuopu (28°33′N, 85°44′E, 7000 m a.s.l.), and East Rongbuk (27°59′N, 86°55′E, 6450 m a.s.l.) glaciers, respectively. In general, the major ions show a significant seasonal variation, with high concentrations during the non-monsoon (pre-monsoon and post-monsoon) season and relatively low concentrations during the monsoon season. Monsoon precipitation with high local/regional dust loading related to summer circulation is possibly responsible for the high concentrations occurring sporadically during the monsoon season. The crest of the Himalayas is an effective barrier to the spatial distribution of Na+, Cl and concentrations, but not to the major ions associated with dust influx (e.g. Ca2+ and Mg2+). Atmospheric backward trajectories from the HYSPLIT_4 model used in identifying chemical species sourcing suggest that the major ions in the Himalayan snow and ice come mainly from the Thar Desert located in the North India, as well as West Asia, or even the distant Sahara Desert in the North Africa during the winter and spring seasons. This is different from the conventionally assumed arid and semi-arid regions of the central Asia. Factors, such as different vapor sources due to atmospheric circulation patterns and geographical features (e.g. altitude, topography), may contribute to the differences in major ionic concentrations between the western and eastern Himalayas.  相似文献   
48.
With trends indicating increase in temperature and decrease in winter precipitation, a significant negative trend in snow-covered areas has been identified in the last decade in the Himalayas. This requires a quantitative analysis of the snow cover in the higher Himalayas. In this study, a nonlinear autoregressive exogenous model, an artificial neural network (ANN), was deployed to predict the snow cover in the Kaligandaki river basin for the next 30 years. Observed climatic data, and snow covered area was used to train and test the model that captures the gross features of snow under the current climate scenario. The range of the likely effects of climate change on seasonal snow was assessed in the Himalayas using downscaled temperature and precipitation change projection from - HadCM3, a global circulation model to project future climate scenario, under the AIB emission scenario, which describes a future world of very rapid economic growth with balance use between fossil and non-fossil energy sources. The results show that there is a reduction of 9% to 46% of snow cover in different elevation zones during the considered time period, i.e., 2Oll to 2040. The 4700 m to 52oo m elevation zone is the most affected area and the area higher than 5200 m is the least affected. Overall, however, it is clear from the analysis that seasonal snow in the Kaligandaki basin is likely to be subject to substantialchanges due to the impact of climate change.  相似文献   
49.
In metacarbonates of the Lesser (LH) and Tethyan (TH) Himalayas of Kumaon/Garhwal (N-India) characteristic remanent magnetisations carried by pyrrhotite (unblocking temperatures: 250-330°C) and magnetite (demagnetising spectra: 15-50 mT) have been identified. Negative fold tests indicate remanence acquisition after the main folding phase, which is of short-wavelength character and occurs during the early orogenese of the Himalayas. A thermal or thermochemical origin of magnetisation is likely and the age of remanence acquisition is indicated to be about 40 Ma by 40K/39Ar cooling and 40Ar/39Ar crystallisation ages. In the Kumaon LH a long-wavelength tilting is indicated by a distribution of the remanence directions along a small-circle in N-S direction. Steepening of the remanence directions in the TH related to ramping on the Main Central Thrust (MCT) was not observed, in contrast to other related studies. In the Alaknanda valley of LH a 38±8 Ma age of remanence acquisition is supported by comparison of observed inclinations to the apparent polar wander path of India. Clockwise rotation of 20.3±11.7° (LH/Alaknanda valley) and 11.3±8.5° (TH) with respect to the Indian plate is observed, indicating that there is no significant evidence for rotational shortening along the MCT since about 40 Ma. Our results suggest that most of rotational underthrusting and oroclinal bending has not been accommodated by the MCT, but by the main thrusts south of it. The latest Miocene/Pliocene age of the Main Boundary Thrust indicates that oroclinal bending is a late-orogenic process.  相似文献   
50.
U(–Th)–Pb geochronology, geothermobarometric estimates and macro‐ and micro‐structural analysis, quantify the pressure–temperature–time–deformation (PTtD) history of Everest Series schist and calcsilicate preserved in the highest structural levels of the Everest region. Pristine staurolite schist from the Everest Series contains garnet with prograde compositional zoning and yields a P–T estimate of 649 ± 21 ° C, 6.2 ± 0.7 kbar. Other samples of the Everest Series contain garnet with prograde zoning and staurolite with cordierite overgrowths that yield a P–T estimate of 607 ± 25 ° C, 2.9 ± 0.6 kbar. The Lhotse detachment (LD) marks the base of the Everest Series. Structurally beneath the LD, within the Greater Himalayan Sequence (GHS), garnet zoning is homogenized, contains resorption rinds and yields peak temperature estimates of ~650 ± 50 ° C. P–T estimates record a decrease in pressure from ~6 to 3 kbar and equivalent temperatures from structurally higher positions in the overlying Everest Series, through the LD and into GHS. This transition is interpreted to result from the juxtaposition of the Everest Series in the hangingwall with the GHS footwall rocks during southward extrusion and decompression along the LD system. An age constraint for movement on the LD is provided by the crystallization age of the Nuptse granite (23.6 ± 0.7 Ma), a body that was emplaced syn‐ to post‐solid‐state fabric development. Microstructural evidence suggests that deformation in the LD progressed from a distributed ductile shear zone into the structurally higher Qomolangma detachment during the final stages of exhumation. When combined with existing geochronological, thermobarometric and structural data from the GHS and Main Central thrust zone, these results form the basis for a more complete model for the P–T–t–D evolution of rocks exposed in the Mount Everest region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号