首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   132篇
  免费   9篇
  国内免费   4篇
测绘学   1篇
大气科学   3篇
地球物理   63篇
地质学   62篇
海洋学   3篇
天文学   1篇
综合类   1篇
自然地理   11篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   3篇
  2019年   2篇
  2018年   2篇
  2017年   7篇
  2016年   2篇
  2015年   4篇
  2014年   7篇
  2013年   4篇
  2012年   2篇
  2011年   5篇
  2010年   1篇
  2009年   10篇
  2008年   20篇
  2007年   15篇
  2006年   10篇
  2005年   4篇
  2004年   5篇
  2003年   7篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1997年   7篇
  1996年   2篇
  1995年   3篇
  1994年   4篇
  1993年   2篇
  1991年   1篇
  1988年   1篇
排序方式: 共有145条查询结果,搜索用时 31 毫秒
41.
The Glacier Peak tephra beds are among the most widespread and arguably some of the most important late Pleistocene chronostratigraphic markers in western North America. These beds represent a series of closely-spaced Plinian and sub-Plinian eruptions from Glacier Peak, Washington. The two most widespread beds, Glacier Peak ‘G’ and ‘B’, are reliably distinguished by their glass major and trace element abundances. These beds are also more broadly distributed than previously considered, covering at least 550,000 and 260,000 km2, respectively. A third bed, the Irvine bed, known only from southern Alberta, is similar in its major-element composition to the Glacier Peak G bed, but it shows considerable differences in trace element concentrations. The Irvine bed is likely considerably older than the G and B tephras and probably records an additional Plinian eruption, perhaps also from Glacier Peak but from a different magma than G through B. A review of the published radiocarbon ages, new ages in this study, and consideration in a Bayesian framework suggest that the widespread G and B beds are several hundred years older than widely assumed. Our revised age is about 11,600 14C yr BP or a calibrated age (at 2 sigma) of 13,710-13,410 cal yr BP.  相似文献   
42.
New lithostratigraphical, pollen-stratigraphical and tephrostratigraphical data are presented for a sediment sequence at Turret Bank, a site that lies close to the confluence of the River Turret with the River Roy in Lochaber, the western Scottish Highlands. The site is also adjacent to the inner margin of a major gravel fan, the Glen Turret Fan, the age of which has been debated and has a crucial bearing on the overall sequence of events in Glen Roy, especially concerning the maximum limit of Loch Lomond Readvance (Younger Dryas) ice. Several lines of evidence point to the sediment sequence at Turret Bank having been wholly deposited during the Loch Lomond Stadial-early Holocene transition: (i) the pollen sequence is typical for this transitional period; (ii) varved deposits preserved in the sequence bear a strong resemblance to mid-Stadial varves in a regional master varve scheme for Glen Roy and vicinity (the Lochaber Master Varve Chronology); and (iii) an early Holocene tephra – the Askja-S Tephra – is preserved within the sequence. Some limitations with the new data are considered, but it is concluded that the coherent integration of lithostratigraphic, geomorphological, pollen-stratigraphical and tephrostratigraphical data point to the likelihood that Loch Lomond Readvance ice extended to the inner margin of the Glen Turret Fan, and that the fan was probably constructed by glacial meltwaters at this time.  相似文献   
43.
The important role of floodplains and the broader riparian zone in providing temporary storage for a large fraction of the annual sediment load of rivers is well established, but this understanding is largely based on observations of the long‐term average behavior of the catchment. Here we combine measurements of the fallout radionuclides 7Be and 210Pb and the stable isotopes of hydrogen in water to quantify fine sediment mobilization and storage in a stream and its channel margins during individual intermediate‐sized storm events with recurrence intervals of a few months or less. We demonstrate this method using five storm events in a small (~15 km2), undeveloped, gravel‐bedded tributary of the Connecticut River (USA). We estimate that in each storm, the mass of sediment deposited onto the margins accounts for almost 90% of the sediment mobilized from the bed, with the remainder of the mobilized bed sediment transported downstream as suspended load. The result that the bed is a net source of sediment to the stream and the margins a net sink is robust, but estimates of the mass of material eroded from the bed and deposited on the margins are less certain. The source of sediment to the bed remains unclear as, consistent with earlier studies, we observe only limited deposition of sediment to the bed during the storm events. The suspended sediment is organic‐rich and thus its source may be associated with in‐channel organic decay between storm events. Understanding the coupled interactions between discharge magnitude and frequency and sediment resupply at the event time scale has important implications for stream restoration efforts seeking to connect the channel and the broader riparian zone, and for the development of accurate sediment budgets and predictions of sediment flux from a watershed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
44.
The Norse/Viking occupation of Greenland is part of a dispersal of communities across the North Atlantic coincident with the supposed Medieval Warm Period of the late 1st millennium AD. The abandonment of the Greenland settlements has been linked to climatic deterioration in the Little Ice Age as well as other possible explanations. There are significant dating uncertainties over the time of European abandonment of Greenland and the potential influence of climatic deterioration. Dating issues largely revolve around radiocarbon chronologies for Norse settlements and associated mire sequences close to settlement sites. Here we show the potential for moving this situation forward by a combination of palynological, radiocarbon and cryptotephra analyses of environmental records close to three ‘iconic’ Norse sites in the former Eastern Settlement of Greenland – Herjolfsnes, Hvalsey and Garðar (the modern Igaliku). While much work remains to be undertaken, our results show that palynological evidence can provide a useful marker for both the onset and end of Norse occupation in the region, while the radiocarbon chronologies for these sequences remain difficult. Significantly, we here demonstrate the potential for cryptotephra to become a useful tool in resolving the chronology of Norse occupation, when coupled with palynology. For the first time, we show that cryptotephra are present within palaeoenvironmental sequences located within or close to Norse settlement ruin-groups, with tephra horizons detected at all three sites. While shard concentrations were small at Herjolfsnes, concentrations sufficient for geochemical analyses were detected at Igaliku and Hvalsey. WDS-EPMA analyses of these tephra indicate that, unlike the predominantly Icelandic tephra sources reported in the Greenland ice core records, the tephra associated with the Norse sites correlate more closely with volcanic centres in the Aleutians and Cascades. Recent investigations of cryptotephra dispersal from North American centres, along with our new findings, point to the potential for cryptotephra to facilitate hypothesis testing, providing a key chronological tool for refining the timing of Norse activities in Greenland (e.g. abandonment) and of environmental contexts and drivers (e.g. climate forcing).  相似文献   
45.
In this paper, we present a complete morphological characterization of the ash particles erupted on 18 December 2002 from Etna volcano, Italy. The work is based on the acquisition and processing of bidimensional digital images carried out by scanning electron microscopy (SEM) to obtain shape parameters by image analysis. We measure aspect ratio (AR), form factor (FF), compactness (CC), and rectangularity (RT) of 2065 ash particles with size between 0.026 and 1.122 mm. We evaluate the variation of these parameters as a function of the grain-size. Ash particles with a diameter of <0.125 mm vary from mostly equant to very equant, ash particles between 0.125 and 0.250 mm have an intermediate shape, and particles with diameters >0.250 mm are subelongate. We find that, on average, particles with a diameter of <0.250 mm are subrounded, particles between 0.250 and 0.50 mm are subangular, and particles >0.50 mm are angular. Using this morphological analysis and an empirical relation between the drag coefficient (C D) and Reynolds number (R e) of Wilson and Huang (Earth Planet Sci Lett 44:311–324, 1979), we calculate the terminal settling velocities (V WH). The comparisons between these velocities and those calculated with the formula of Kunii and Levenspiel (Fluidization engineering. Wiley, New York, pp 97, 1969) (V KL), which considers ash particles as spheres, show that V KL are in average 1.28 greater than V WH. Hence, we quantify the systematic error on the spatial distribution of the mass computed around the volcano carried out by tephra dispersal models when the particles are assumed to be spherical.  相似文献   
46.
Tianchi volcano in Changbaishan area is located at the border between China and Democratic People's Republic of Korea, and is one of the most dangerous volcanoes in China. It has experienced several explosive eruptions in late Pleistocene and Holocene, i.e. 50000aBP eruption, 946 AD eruption, 1668 AD eruption, 1702 AD eruption, 1903 AD eruption. Especially, the 946 AD eruption(also known as "Millennium eruption")of this volcano is considered to be one of the largest volcanic eruptions in the world in the past 2000a. The eruption history and strata sequence of Tianchi volcano have long been the focus of attention. The stratigraphic unit division of fallout deposits in the past millennium is controversial, especially for the heterogeneous trachytic pumices(erupted from the Yuanchi stage)above the off-white pumices(erupted from the Chifeng stage). In this paper, through the detailed field exploration and strata comparation, it was found that there was no depositional interval between the two stage eruptions, or the interval was not long, and thus, it is believed that two stages of fallout pumice should be classified into the Millennium eruption. The off-white fallout pumices in Chifeng stage are relatively homogeneous, with angular shape, normal grading and good sorting. The median size(MdΦ)and the sorting coefficient(σΦ)of Chifeng pumice are in the range of -4.25~-1.3 and 0.93~1.53, respectively. The eruption of Yuanchi stage is in pulsing pattern, and the strata show interbedding of rich khaki pumice layer and rich black pumice layer. The pumices with angular shape show inconspicuous grain grading and good sorting. The median size(MdΦ)and the sorting coefficient(σΦ)of Yuanchi pumice are in the range of -2.55~-0.6 and 1~1.68, respectively. Both the granularities of the pumice particles from two stages are normally distributed and fall into the air-fall field in the median diameter versus sorting diagram. The pumices from 50000aBP and pyroclastic flow of Millennium eruption were also shown in the diagram. Phenocrysts in pumices are mainly feldspar and pyroxene, but the phenocrysts with obvious resorbed characteristic in Yuanchi black pumice are bigger, and the phenocryst contents are a little higher than those in others. Feldspar content in off-white pumice in Chifeng stage was 0.24%~1.77%, that in khaki pumice in Yuanchi stage was 0.2%~7.5%, and that in black pumice in Yuanchi stage was 3.02%~8.0%. The phenocrysts in Chifeng pumice are broken, which represents more violent explosion. The vesicles inside the pumice also reflect the intensity of the eruption. The Chifeng pumices have large, continuous vesicles and thin vesicle walls. The Yuanchi khaki pumices have continuous vesicles but thicker vesicle wall than the Chifeng pumices. The vesicularity is the lowest and the vesicle walls are the thickest in the black pumices in Yuanchi stage, indicating the eruption strength become weaker from Chifeng stage to Yuanchi stage. The Chifeng pumices with SiO2 content of 69.12~72.71wt%, K2O content of 4.33~4.52wt%, Na2O content of 5.26~5.39wt%, Al2O3 content of 10.32~11.99wt%, CaO content of 0.29~0.95wt%, MgO content of 0.11~0.51wt%, TiO2 content of 0.23~0.43wt% are comendite in composition. The pumices from 50000aBP eruption are comendite in composition, and their SiO2 content(65.56~68.28wt%)is slightly lower than Chifeng pumices. The Yuanchi khaki pumices with SiO2 content of 62.14~63.29wt%, K2O content of 5.35~5.7wt%, Na2O content of 5.35~5.62wt%, Al2O3 content of 15.00~15.59wt%, CaO content of 1.06~1.61wt%, MgO content of 0.25~0.57wt%, TiO2 content of 0.4~0.64wt% belong to trachyte in composition, and are close to the composition of the black pumices on the Tianwen Peak. The Yuanchi black pumices are also trachyte in composition, but have obviously lower SiO2(59.51~60.59wt%), K2O(4.39~4.84wt%), and Na2O(4.94~5.08wt%)content, and higher Al2O3(15.81~16.42wt%), CaO(2.78~3.66wt%), MgO(1.43~1.9wt%), TiO2(1.04~1.4wt%)content than the khaki pumices. The above results show that the eruptive intensity of the Yuanchi stage is weaker than that of the Chifeng stage and the several magmatic compositions of pumices from the Millennium eruption reveal a complex magma system under the Tianchi volcano. The magma layers with different compositions may exist in the magma chamber contemporaneously. At Chifeng stage, only the upper comendite magma erupted, but the magma below erupted in the pulsing pattern at the Yuanchi stage.  相似文献   
47.
Discrete Quaternary (<400 ka) tephra fallout layers (mostly <1 cm thick) within the siliceous oozes of the central Mariana Trough at 18°N are characterized by medium-K to high-K subalkalic volcanic glasses (K2O=0.8–3.2 wt.%) with high large-ion lithophile elements (LILE)/high-field-strength elements (HFSE) ratios and Nb depletion (Ba/La35; Ba/Zr3.5; La/Nb4) typical for convergent margin volcanic rocks. Compositional zoning within layers ranges from basaltic to dacitic (SiO2=48–71 wt.%; MgO=0.7–6.5 wt.%); all layers contain basaltic andesites. The tephra layers are interpreted as single explosive eruptive events tapping chemically zoned reservoirs, the sources being the Mariana arc volcanoes (MAV) due to their proximity (100–400 km) and similar element ratios (MAV: Ba/La=36±7; Ba/Zr=3.5±0.9). The glasses investigated, however, contrast with the contemporaneous basaltic to dacitic lavas of the MAV by being more enriched in TiO2 (1.2 wt.%; MAV0.8 wt.%), FeO* (10 wt.%, MAV8–9 wt.%), K2O (1.1 wt.%; MAV0.8 wt.%) and P2O5 (0.4 wt.%; MAV0.2 wt.%). (Semi-)Incompatible trace elements (including Rare Earth Elements (REE)) of the basaltic-andesitic and dacitic glasses match those of the dacitic MAV lavas, which became enriched by fractional crystallization. Moreover, the glasses follow a tholeiitic trend of fractionation in contrast to MAV transitional trends and have a characteristic P2O5 trend that reaches a maximum of 0.6 wt.% P2O5 at 57 wt.% SiO2, whereas MAV lavas increase linearly in P2O5 from 0.1 to 0.3 wt.% with increasing silica. Both explosive and effusive series are interpreted to have evolved in common magma reservoirs by convective fractionation. Similar parental magmas are suggested to have separated into coexisting Si-andesitic to dacitic and basaltic melts by in situ crystallization. The differentiated melt is interstitial in an apatite-saturated crystalline mush of plag+px±ox±ol at the cooler chamber margins in contrast to the less differentiated basaltic to basaltic-andesitic magmas, which are not yet saturated in apatite and occupy the chamber interior. Reinjection of interstitial melt into the chamber interior and mixing with larger melt fractions of the interior liquid (mixing ratios about 1: 8–9) can explain the paradoxical behavior of apatite-controlled P and MREE variation in the basaltic andesite glasses and their MAV dacite-like fractionation patterns. The process may also account for the exclusively tholeiitic trend of fractionation of the glass shard series, but in situ crystallization alone cannot cause their absolute enrichment in (semi-)incompatible elements. The newly mixed melt is suggested to form the basaltic end member of the glass shard series. However, it must have become physically separated from the main MAV magma body (possibly by density-driven convective fractionation) in order to allow for further evolution of the contrasting geochemical paths as well as differentiation.  相似文献   
48.
The tephra fallout from the 12–15 August 1991 explosive eruption of Hudson volcano (Cordillera de los Andes, 45°54 S-72°58 W; Chile) was dispersed on a narrow, elongated ESE sector of Patagonia, covering an area (on land) of more than 100 000 km2. The elongated shape of the deposit, together with the relatively coarse mean and median values of the particles at a considerable distance from the vent, were the result of strong winds blowing to the southeast during the eruption. The thickness of the fall deposit decreases up to 250 km ESE from Hudson volcano, where it begins to thicken again. Secondary maxima are well developed at approximately 500 km from the vent. Secondary maxima, together with grainsize bimodality in individual layers and in the bulk deposit suggest that particle aggregation played an important role in tephra sedimentation. The fallout deposit is well stratified, with alternating fine-grained and coarsegrained layers, which is probably a result of strong eruptive pulses followed by relatively calm periods and/or changes in the eruptive style from plinian to phreatoplinian. The tephra is mostly composed of juvenile material: the coarse mode (mostly pumice) shifts to finer sizes with distance from the volcano; the fine mode (mostly glass shards) is always about 5/6 phi. Glass shards and pumice are mostly light gray to colorless. However, considerable amounts of dark, poorly vesiculated, blocky shards, suggest a hydromagmatic component in the eruption. A land-based tephra volume of 4.35 km3 was estimated, and a total volume of 7.6 km3 arose from an extrapolation, which took into account the probable volume sedimented in the sea. Bulk density ranges from 0.9 to 1.10 gr/cm3 (beyond 110 km from the vent). Rather uniform density values measured in crushed samples (2.45–2.50 gr/cm3 at all distances from the vent) reveal a relatively homogeneous composition. Mean and median sizes decrease rapidly up to 270 km from the vent; beyond that point they are more or less constant, whereas the maximum size (1 phi) shows a steady decrease up to 550 km. A concomitant improvement in sorting is observed. This is attributed to sorting due to wind transport combined with particle aggregation at different times and distances from the vent. The Hudson tephra fallout shares some strikingly similar features with the Mount St. Helens (18 May 1980) and Quizapu (1932) eruptions.  相似文献   
49.
Numerous tephra dispersion and sedimentation models rely on some abstraction of the volcanic plume to simplify forecasts of tephra accumulation as a function of the distance from the volcano. Here we present solutions to the commonly used advection–dispersion equation using a variety of source shapes: a point, horizontal and vertical lines, and a circular disk. These may be related to some volcanic plume structure, such as a strong plume (vertical line), umbrella cloud (circular disk), or co-ignimbrite plume (horizontal line), or can be used to build a more complex plume structure such as a series of circular disks to represent a buoyant weak plume. Basing parameters upon eruption data, we find that depositions for the horizontal source shapes are very similar but differ from the vertical line source deposition. We also compare the deposition from a series of stacked circular disk sources of increasing radius above the volcanic vent with that from a vertical line source.  相似文献   
50.
Cosmogenic 7Be is a natural tracer of short‐term hydrological processes, but its distribution in upland fluvial environments over different temporal and spatial scales has not been well described. We measured 7Be in 450 sediment samples collected from perennial channels draining the middle of the Connecticut River Basin, an environment that is predominantly well‐sorted sand. By sampling tributaries that have natural and managed fluctuations in discharge, we find that the 7Be activity in thalweg sediments is not necessarily limited by the supply of new or fine‐grained sediment, but is controlled seasonally by atmospheric flux variations and the magnitude and frequency of bed mobilizing events. In late winter, 7Be concentrations in transitional bedload are lowest, typically 1 to 3 Bq kg?1 as 7Be is lost from watersheds via radioactive decay in the snowpack. In mid‐summer, however, 7Be concentrations are at least twice as high because of increased convective storm activity which delivers high 7Be fluxes directly to the fluvial system. A mixed layer of sediment at least 8 cm thick is maintained for months in channels during persistent low rainfall and flow conditions, indicating that stationary sediments can be recharged with 7Be. However, bed mobilizing rain on snowmelt events in late Spring can ‘reset’ 7Be amounts and concentrations in the channel as previously buried ‘old’ sediment with low 7Be is mixed into the thalweg. We conclude that given proper temporal and spatial sampling, 7Be is a valuable tracer of seasonal‐timescale mass transport and exchange in coarse‐grained fluvial systems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号