首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   936篇
  免费   381篇
  国内免费   498篇
测绘学   13篇
大气科学   2篇
地球物理   503篇
地质学   1157篇
海洋学   45篇
天文学   8篇
综合类   39篇
自然地理   48篇
  2024年   2篇
  2023年   11篇
  2022年   26篇
  2021年   31篇
  2020年   53篇
  2019年   57篇
  2018年   57篇
  2017年   80篇
  2016年   63篇
  2015年   59篇
  2014年   86篇
  2013年   105篇
  2012年   74篇
  2011年   90篇
  2010年   76篇
  2009年   75篇
  2008年   60篇
  2007年   64篇
  2006年   73篇
  2005年   40篇
  2004年   66篇
  2003年   59篇
  2002年   50篇
  2001年   44篇
  2000年   48篇
  1999年   49篇
  1998年   41篇
  1997年   37篇
  1996年   51篇
  1995年   43篇
  1994年   26篇
  1993年   34篇
  1992年   20篇
  1991年   22篇
  1990年   13篇
  1989年   13篇
  1988年   7篇
  1987年   3篇
  1986年   1篇
  1984年   1篇
  1978年   1篇
  1977年   1篇
  1954年   3篇
排序方式: 共有1815条查询结果,搜索用时 218 毫秒
171.
New information on palaeogeography, orogenic evolution, tectonic structure, and boundaries of allochthonous units in the Rheno-Hercynian Belt is based on provenance analyses of clastic sediments and field studies. 40K/40Ar dating of detrital muscovites proved to be a particularly useful method because Cadomian, Caledonian and Early Variscan provenances of detrital material can be distinguished. Cadomian muscovite cooling ages are restricted to allochthonous units whereas Caledonian ages dominate within par-autochthonous and shortly displaced allochthonous units. The largest and uppermost preserved nappe, the Gießen-Harz Nappe, is derived from an oceanic flysch basin, which was not reached by Caledonian detritus. The other allochthonous units form a duplex-like structure sandwiched between the Gießen-Harz Nappe and par-autochthonous units at its base. The thick and heterogeneous roof- and floor-thrusts of this structure were previously often misinterpreted as olistostromes. The northern margin of allochthonous units is the steeply dipping Hörre-Gommern Zone. It consists of three sub-units derived from deep-water areas between the shelf at the southern margin of the Old Red Sandstone Continent and an oceanic basin to the south. The southeastern part of the duplex-structure (Harzgerode Zone) shows close affinities to Armorican terranes.  相似文献   
172.
The NW corner of the Little Hungarian Plain, which lies at the junction of the Eastern Alps, the Pannonian Basin and the Western Carpathians, is a neotectonically active region linking the extrusional tectonics of the Eastern Alps with the partly subsiding Little Hungarian Plain. The on-going deformation is verified by the earthquake activity in the region. An extremely flat part of the area, east of Neusiedlersee, the so-called Seewinkel, has been investigated with Airborne Laser Scanning (ALS, also known as airborne LiDAR) techniques, resulting in a digital terrain model (DTM) with a 1 m grid resolution and vertical precision of better than 10 cm. The DTM has been compared with known and inferred neotectonic features.Potential neotectonic structures of the DTM have been evaluated, together with geological maps, regional tectono-geomorphic studies, geophysical data, earthquake foci, as well as geomorphological features and the Quaternary sediment thickness values of the Seewinkel and the adjacent Parndorfer plateau. A combined evaluation of these data allows several tectonic features with a relief of < 2 m to be recognized in the DTM. The length of these linear geomorphological structures ranges from several hundred meters up to several kilometers. The most prominent feature forms a 15 km long, linear, 2 m high NE–SW trending ridge with gravel occurrences having an average grain size of ca. 5 cm on its top. We conclude this feature to represent the surface expression of the previously recognized Mönchhof Fault. In general, this multi-disciplinary case study shows that ALS DTMs are extremely important for tectono-geomorphic investigations, as they can detect and accurately locate neotectonic structures, especially in low-relief areas.  相似文献   
173.
A. Demoulin  E. Hallot 《Tectonophysics》2009,474(3-4):696-708
A good evaluation of the Quaternary uplift of the Rhenish shield is a key element for the understanding of the Cenozoic geodynamics of the western European platform in front of the alpine arc. Previous maps of the massif uplift relied on fluvial incision data since the time of the rivers' Younger Main Terrace to infer a maximum post-0.73 Ma uplift of ~ 290 m in the SE Eifel. Here, we propose a new interpretation of the incision data of the intra-massif streams, where anomalies in the terrace profiles would result from knickpoint retreat in the tributaries of the main rivers rather than from tectonic deformation. We also use additional geomorphological data referring to (1) deformed Tertiary planation surfaces, (2) the history of stream piracy that severely affected the Meuse basin in the last 1 Ma, and (3) incision data outside the Rhenish shield. A new map of the post-0.73 Ma uplift of the Rhenish shield is drawn on the basis of this enlarged dataset. It reduces the maximum amount of tectonic uplift in the SE Eifel to ~ 140 m and modifies the general shape of the uplift, namely straightening its E–W profile. It is also suggested that an uplift wave migrated across the massif, starting from its southern margin in the early Pleistocene and currently showing the highest intensity of uplift in the northern Ardennes and Eifel. These features seem to favour an uplift mechanism chiefly related to lithospheric folding and minimize the impact on the topography of a more local Eifel plume.  相似文献   
174.
In moderately to highly strained sandstones, both the long axis of the bedding-parallel finite-strain ellipse, as calculated by the normalized Fry method, and the projection of the long axis of the AMS ellipsoid on the plane of bedding, align well with local “structural grain” (trends of cleavage, folds, and faults). This relationship implies that results of both 2D Fry and AMS analyses represent the local layer-parallel tectonic strain component. Do both methods provide comparable results for very low-strain sandstone (e.g., <5%)? To address this question, Fry and AMS analyses were conducted in very low-strain sandstone from two localities in the Appalachian foreland fold–thrust belt: near Rosendale in New York and the Lackawanna synclinorium of Pennsylvania. We compared the map projections of both bedding-parallel Fry ellipses and AMS ellipsoids to the local structural grain. In both study areas, projections of the long axis of Fry strain ellipses do not cluster in a direction parallel to structural grain, whereas the projection of the long axes of AMS ellipsoids do cluster closely to structural grain. This observation implies that in very low-strain sandstone, AMS analysis provides a more sensitive “quick” indicator of tectonic fabric than does normalized Fry analysis.  相似文献   
175.
柴达木盆地东北部新近纪构造旋转及其意义   总被引:4,自引:1,他引:3  
青藏高原东北缘构造变形的研究是认识高原隆起过程、机制和印度—欧亚板块碰撞远程效应的重要途径。柴达木盆地是印度-欧亚板块碰撞后南北向挤压应力为动力背景的高原东北部内陆盆地,沉积物主要来自于周边山地,完整的保存了新生代以来高原隆升的详细记录。通过柴达木盆地东北部瑙格剖面精细古地磁及构造旋转研究发现,20.1~15.1Ma以及15.1~8.2Ma柴达木盆地分别发生了9.7°±7.4°和6.4°±4.4°的顺时针旋转,约8.2Ma后,柴达木盆地东北部瑙格地区发生了16°±7.5°的逆时针快速旋转。通过分析认为,前两次的顺时针构造旋转事件可能与阿尔金断裂的左旋走滑有关。而约82Ma以来的逆时针旋转事件属于柴达木盆地东北部瑙格地区的局部旋转,可能与温泉断裂的右旋走滑有关,说明青藏高原东北部在昆仑山、阿尔金山和祁连山三条巨型断裂系左旋相对运动的宏观控制下形成的NNW向温泉右旋走滑断裂开始走滑的年代为约8Ma。  相似文献   
176.
Field, hand specimen, and microscopic investigations alongside X-ray diffraction analyses revealed four types of hydrothermal alteration (Type-A, -B, -C, and -D) based on the mode of occurrence of altered rocks and alteration mineral assemblage at Hakusui-kyo and Horai-kyo along the Arima-Takatsuki Tectonic Line (ATTL) in western Japan. Type-A alteration locally occurred as gray alteration halos with sulfide minerals. Type-B and -C alterations were confined to fault gouge veins and occurred as greenish-gray veins and brown veins, respectively. Type-C alteration crosscut Type-B alteration. These alterations were associated with a number of granitic fragments including cohesive breccia and micrographic facies. Type-D alteration occurred locally in brown sediments. Different mineralogical features in the four alterations are summarized as (Type-A) illite; (Type-B) chlorite; (Type-C) limonite (Fe3+ hydroxides and goethite) and calcite; and (Type-D) limonite. We propose that the alterations can be broadly divided into Paleocene hydrothermal alteration (Type-A) and post-Late Miocene hydrothermal alteration (Type-B, -C, and -D): Type-A alteration occurred at approximately 200 °C during hydrothermal activity after a granitic intrusion in Late Cretaceous; Type-B, -C and -D alterations occurred under hydrothermal activity accompanying deep fluids with repeated ascents invoked by the seismicity of the ATTL after the Late Miocene. The fluids may have been the “Arima-type thermal waters” (i.e., mixtures of convective groundwater and Na-Ca-Cl-HCO3-type fluids). Type-B alteration occurred in fractures at depths where the temperature was ≥150 °C. Type-C alteration overprinted Type-B alteration as a result of mixing of new deep fluids and descending oxidized meteoric water near the surface. Fe3+ hydroxides and calcite precipitated from the fluids due to the oxidation of Fe2+ and the degassing of CO2, respectively, at ambient to near-boiling temperatures. When the ascending fluids gushed out from the fractures, they generated Type-D alteration at the surface under similar temperature conditions due to the oxidation of Fe2+.  相似文献   
177.
The New England Orogen (NEO), the youngest of the orogens of the Tasmanides of eastern Australia, is defined by two main cycles of compression–extension. The compression component involves thrust tectonics and advance of the arc towards the continental plate, while extension is characterised by rifting, basin formation, thermal relaxation and retreat of the arc towards the oceanic plate. A compilation of 623 records of U–Pb zircon geochronology rock ages from Geoscience Australia, the geological surveys of Queensland and New South Wales and other published research throughout the orogen, has helped to clarify its complex tectonic history. This contribution focuses on the entire NEO and is aimed at those who are unfamiliar with the details of the orogen and who could benefit from a summary of current knowledge. It aims to fill a gap in recent literature between broad-scale overviews of the orogen incorporated as part of wider research on the Tasmanides and detailed studies usually specific to either the northern or southern parts of the orogen. Within the two main cycles of compression–extension, six accepted and distinct tectonic phases are defined and reviewed. Maps of geological processes active during each phase reveal the centres of activity during each tectonic phase, and the range in U–Pb zircon ages highlights the degree of diachronicity along the length of the NEO. In addition, remnants of the early Permian offshore arc formed during extensive slab rollback, are identified by the available geochronology. Estimates of the beginning of the Hunter-Bowen phase of compression, generally thought to commence around 265?Ma are complicated by the presence of extensional-type magmatism in eastern Queensland that occurred between 270 and 260?Ma.  相似文献   
178.
马静辉  何登发 《岩石学报》2019,35(4):1121-1142
贺兰山构造带及邻区的构造属性长期以来存在争议,确定该地区中新生代的构造事件及隆升过程是了解这一重要陆内变形带动力学机制的关键所在。本文采用不整合面分析法和低温热年代学方法,综合分析探讨了贺兰山构造带及邻区中新生代的构造事件及其构造演化过程。通过对该地区的野外地质调查,本次在中-新生代地层中由底到顶识别出6个不同类型的不整合面,它们分别是:(1) T_(2-3)/P平行不整合面;(2) J/AnJ角度不整合面-微角度不整合面;(3) K_1/AnK_1高角度不整合面;(4) E_3q/AnE_3;(5) N_1/AnN_1;(6) Q/An Q。在T_3d~3、J_2y和K_1变形前锋,可见与逆冲-褶皱造山带相关的同构造沉积生长地层,其在形态上表现为超覆、削截,在黄草滩等地局部与倒转背斜相伴生。这些不整合和生长地层是构造活动的直接证据。本次研究对采自该地区的12件样品分别进行了磷灰石、锆石裂变径迹测年及热史模拟分析。结果表明,裂变径迹年龄主要分布在4个区间,对应地质时代分别为中侏罗世-晚侏罗世(168~159Ma)、早白垩世末(139~91Ma)、晚白垩世末(79~66Ma)、始新世(59~50Ma),反映出该地区在这4个时期发生了明显的冷却抬升事件,且这4期构造事件与野外观察到的地质特征有很好的地质响应。同时,热史模拟表明该地区整体上经历了晚侏罗世、早白垩世、晚白垩世末-始新世3期快速隆升事件。综合研究表明,该地区主体逆冲褶皱的时间是从中侏罗世开始,早白垩世末构造运动最强烈,新生代又有所活动。  相似文献   
179.
王友谊  张维乾 《贵州地质》2019,36(2):137-140
箐脚金矿床位于雄武背斜近轴部南东翼南西段,金矿赋存于中、上二叠统之间的构造蚀变岩石中。矿体为层状、似层状、透镜状,矿石多为莓状、球状、胶状、环边状结构,星散浸染状、角砾状、晶洞状、薄膜状构造。本文对矿床的成矿地质特征、矿石结构构造、物质组成、蚀变特征等进行分析总结并对矿床成因进行探讨,分析了找矿前景。认为沿已知矿体走向和倾向上加强研究和深部钻探揭露可进一步扩大矿床规模,矿区仍有较大的找矿远景。  相似文献   
180.
Geochemical compositions of the Lower Cambrian Niutitang Formation shales in the southeastern Yangtze Platform margin were investigated for provenance, tectonic setting, and depositional environment. The shale samples are characterized by higher abundances of large ion lithophile elements (Cs, Ba, and Pb), lower abundances of high field strength elements (Cr, Sc, and Co) and transition elements (Th, Zr, Hf, Nb, and Ta) relative to average shale. North American shale composition (NASC) -normalized rare earth element (REE) patterns are observed, with negative Ce anomalies, negative Eu anomalies, and positive Y anomalies. The chemical index of alteration (CIA) varies from 68.67–74.93. Alkali and alkaline element contents and CIA values suggest that the source rocks have undergone moderate weathering. The index of compositional variability (ICV), Zr/Sc and Th/Sc ratios vary from 0.53 to 1.07, 5.31 to 8.18 and 0.52–1.02, respectively. ICV values and relationships between Zr/Sc and Th/Sc ratios indicate negligible sedimentary recycling. The Al2O3/TiO2 (14–26) and TiO2/Zr (56–77) ratios imply that the source rocks of the investigated shales had intermediate igneous compositions. However, Cr/V ratios and a La/Th–Hf discrimination diagram suggest that the intermediate compositional signal of the source rocks was derived from a mixture of 75% mafic and 25% felsic igneous rocks rather than intermediate igneous rocks. The major source was the Jiangnan continental island arc with bimodal igneous rocks, lying to the south of the study area, together with a contribution from granites and gneisses uplifted and eroded in the Yangtze Block. Discrimination of tectonic setting using major and trace elements indicates that the source rocks originated in a transitional setting from active continental to passive margin, consistent with the failed intracontinental rift model for the evolution of the South China plate. The Niutitang Formation shales were deposited in a rift basin setting under conditions of anoxic bottom water in a redox-stratified water column, with organic-rich shales prospective for shale-gas production being found in deep-water downslope and basin environments rather than the shallow-water shelf.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号