首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3598篇
  免费   654篇
  国内免费   890篇
测绘学   881篇
大气科学   399篇
地球物理   787篇
地质学   2335篇
海洋学   220篇
天文学   11篇
综合类   266篇
自然地理   243篇
  2024年   8篇
  2023年   29篇
  2022年   100篇
  2021年   128篇
  2020年   150篇
  2019年   180篇
  2018年   124篇
  2017年   179篇
  2016年   201篇
  2015年   163篇
  2014年   229篇
  2013年   247篇
  2012年   244篇
  2011年   247篇
  2010年   193篇
  2009年   241篇
  2008年   190篇
  2007年   212篇
  2006年   220篇
  2005年   176篇
  2004年   222篇
  2003年   151篇
  2002年   154篇
  2001年   128篇
  2000年   183篇
  1999年   122篇
  1998年   117篇
  1997年   99篇
  1996年   114篇
  1995年   100篇
  1994年   58篇
  1993年   71篇
  1992年   50篇
  1991年   37篇
  1990年   25篇
  1989年   19篇
  1988年   15篇
  1987年   5篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1954年   3篇
排序方式: 共有5142条查询结果,搜索用时 31 毫秒
101.
川西北倒三角形断块东部区域地处青藏高原东部边缘地带,地跨川西北高原及其与四川盆地过渡带的高山峡谷区,属我国著名的南北向地震带的中段,因其特定的大地构造环境和强烈的现代地壳构造运动,导致其在强大的近东西向构造应力场的驱动和平卧“A”字型控震构造体系的控制下,沿两侧边界断裂向东强力楔入,于“构造急剧收口带”之西侧形成了一个近SN向地跨三大构造单元的强震带,强震沿该带有规律的往返迁移和重复发生,且地震活动强弱具有较明显的分形特征。  相似文献   
102.
As a result of the left-lateral strike-slipping of the Altyn Tagh fault in Neotectonic period, a contra-rotational structure, namely the Zhaobishan vortex structure, has developed at the juncture of the main Altyn Tagh fault and the northern fringe fault of the Qilian Mountains.Preliminary analysis on the deformation and evolution of the Zhaobishan vortex structure. In combination with the previous data, suggests that the tectonic transform between the Altyn Tagh fault and the northern fringe fault of the Qilian Mountains attributes to the deformation of the rotational structure. The existence of a series of rotational structures along the Altyn Tagh fault and on the northeastern edge of the Qinghai-Xizang(Tibet) plateau indicate that as the substance in the northern Qinghal-Xizang (Tibet) plateau moves clockwise around the eastern tectonic knot of the Himalayas, rotational structures become the principal mode on the northern marginal zone of the Plateau of transforming and absorbing tectonic deformation.  相似文献   
103.
太湖生态环境演化及其原因分析   总被引:2,自引:1,他引:2       下载免费PDF全文
太湖地处长江下游三角洲,水域面积为2338km2,平均水深1.9m,最大水深不足2.6m,为一典型的大型浅水湖泊。太湖流域地势平坦,河网密布,河湖水力关系复杂。其主要补给径流来自西南部的天目山区及西部的宜溧河流域。每年夏天,大部分入湖洪水通过位于东太湖的太浦河及东北部的望虞河分别排入黄浦江与长江,由于出入湖河道的特殊位置,使得太湖南部的换水周期较短而北部较长。近几十年来,太湖由于污染而逐步呈现富营养化特征,污染物主要来自北部的无锡市和常州市,通过河道排入太湖北部的五里湖与梅梁湾,因此上述两地的水质较南部差。在东太湖,水产养殖对水环境的影响很大,亦呈现出富营养化特征,并殃及该地区的供水,加之该地区为太湖主要的泄洪通道,因此泥沙淤积严重,而且水生植物生长旺盛,呈现出明显的沼泽化趋势;在太湖四周地区,由于湖泊围垦和水利工程建设,其污染净化能力将降低,从而加速水环境恶化的趋势。太湖所面临这些问题,有待于强化湖泊科学管理来解决。  相似文献   
104.
本文描述北京北部燕山地区怀柔长园杂岩体及围岩构造变形迹象 ,并对其成因进行了初步分析。认为中、晚侏罗世时期构造应力场的变化是杂岩体内岩石构造变形的主要因素 ,并以此为根据为该地区燕山期构造 岩浆事件序列的建立提供部分证据。  相似文献   
105.
Three conflicting models are currently proposed for the location and tectonic setting of the Eurasian continental margin and adjacent Tethys ocean in the Balkan region during Mesozoic–Early Tertiary time. Model 1 places the Eurasian margin within the Rhodope zone relatively close to the Moesian platform. A Tethyan oceanic basin was located to the south bordering a large “Serbo-Pelagonian” microcontinent. Model 2 correlates an integral “Serbo-Pelagonian” continental unit with the Eurasian margin and locates the Tethys further southwest. Model 3 envisages the Pelagonian zone and the Serbo-Macedonian zone as conjugate continental units separated by a Tethyan ocean that was sutured in Early Tertiary time to create the Vardar zone of northern Greece and former Yugoslavia. These published alternatives are tested in this paper based on a study of the tectono-stratigraphy of a completely exposed transect located in the Voras Mountains of northernmost Greece. The outcrop extends across the Vardar zone, from the Pelagonian zone in the west to the Serbo-Macedonian zone in the east.Within the Voras Massif, six east-dipping imbricate thrust sheets are recognised. Of these, Units 1–4 correlate with the regional Pelagonian zone in the west (and related Almopias sub-zone). By contrast, Units 5–6 show a contrasting tectono-stratigraphy and correlate with the Paikon Massif and the Serbo-Macedonian zone to the east. These units form a stack of thrust sheets, with Unit 1 at the base and Unit 6 at the top. Unstacking these thrust sheets places ophiolitic units between the Pelagonian zone and the Serbo-Macedonian zone, as in Model 3. Additional implications are, first, that the Paikon Massif cannot be seen as a window of Pelagonian basement, as in Model 1, and, secondly, Jurassic andesitic volcanics of the Paikon Massif locally preserve a gneissose continental basement, ruling out a recently suggested origin as an intra-oceanic arc.We envisage that the Almopias (Vardar) ocean rifted in Triassic time, followed by seafloor spreading. The Almopias ocean was consumed beneath the Serbo-Macedonian margin in Jurassic time, generating subduction-related arc volcanism in the Paikon Massif and related units. Ophiolites were emplaced onto the Pelagonian margin in the west and covered by Late Jurassic (pre-Kimmeridgian) conglomerates. Other ophiolitic rocks formed within the Vardar zone (Ano Garefi ophiolite, Unit 4) in latest Jurassic–Early Cretaceous time and were not deformed until Early Tertiary time. The Vardar zone finally sutured in the Early Tertiary creating the present imbricate thrust structure of the Voras Mountains.  相似文献   
106.
The Armutlu Peninsula and adjacent areas in NW Turkey play a critical role in tectonic reconstructions of the southern margin of Eurasia in NW Turkey. This region includes an inferred Intra-Pontide oceanic basin that rifted from Eurasia in Early Mesozoic time and closed by Late Cretaceous time. The Armutlu Peninsula is divisible into two metamorphic units. The first, the Armutlu Metamorphics, comprises a ?Precambrian high-grade metamorphic basement, unconformably overlain by a ?Palaeozoic low-grade, mixed siliciclastic/carbonate/volcanogenic succession, including bimodal volcanics of inferred extensional origin, with a possibly inherited subduction signature. The second unit, the low-grade znik Metamorphics, is interpreted as a Triassic rift infilled with terrigenous, calcareous and volcanogenic lithologies, including basalts of within-plate type. The Triassic rift was unconformably overlain by a subsiding Jurassic–Late Cretaceous (Cenomanian) passive margin including siliciclastic/carbonate turbidites, radiolarian cherts and manganese deposits. The margin later collapsed to form a flexural foredeep associated with the emplacement of ophiolitic rocks in Turonian time. Geochemical evidence from meta-basalt blocks within ophiolite-derived melange suggests a supra-subduction zone origin for the ophiolite. The above major tectonic units of the Armutlu Peninsula were sealed by a Maastrichtian unconformity. Comparative evidence comes from the separate Almacık Flake further east.Considering alternatives, it is concluded that a Mesozoic Intra-Pontide oceanic basin separated Eurasia from a Sakarya microcontinent, with a wider Northern Neotethys to the south. Lateral displacement of exotic terranes along the south-Eurasian continental margin probably also played a role, e.g. during Late Cretaceous suturing, in addition to overthrusting.  相似文献   
107.
In southern Turkey ongoing differential impingement of Arabia into the weak Anatolian collisional collage resulting from subduction of the Neotethyan Ocean has produced one of the most complex crustal interactions along the Alpine–Himalayan Orogen. Several major transforms with disputed motions, including the northward extension of the Dead Sea Fault Zone (DSFZ), meet in this region. To evaluate neotectonic motion on the Amanos and East Hatay fault zones considered to be northward extensions of the DSFZ, the palaeomagnetism of volcanic fields in the Karasu Rift between these faults has been studied. Remanence carriers are low-Ti magnetites and all except 5 of 51 basalt lavas have normal polarity. Morphological, polarity and K–Ar evidence show that rift formation occurred largely during the Brunhes chron with volcanism concentrated at 0.66–0.35 Ma and a subsidiary episode at 0.25–0.05. Forty-four units of normal polarity yield a mean of D/I=8.8°/54.7° with inclination identical to the present-day field and declination rotated clockwise by 8.8±4.0°. Within the 15-km-wide Hassa sector of the Karasu Rift, the volcanic activity is concentrated between the Amanos and East Hatay faults, both with left lateral motions, which have rotated blocks bounded by NW–SE cross faults in a clockwise sense as the Arabian Block has moved northwestwards. An average lava age of 0.5 Ma yields a minimum cumulative slip rate on the system bounding faults of 0.46 cm/year according with the rate deduced from the Africa–Arabia Euler vector and reduced rates of slip on the southern extension of the DSFZ during Plio-Quaternary times. Estimates deduced from offsets of dated lavas flows and morphological features on the Amanos Fault Zone [Tectonophysics 344 (2002) 207] are lower (0.09–0.18 cm/year) probably because they are limited to surface fault breaks and do not embrace the seismogenic crust.Results of this study suggest that most strike slip on the DSFZ is taken up by the Amanos–East Hatay–Afrin fault array in southern Turkey. Comparable estimates of Quaternary slip rate are identified on other faults meeting at an unstable FFF junction (DSFZ, East Anatolian Fault Zone, Karatas Fault Zone). A deceleration in slip rate across the DSFZ and its northward continuation during Plio-Quaternary times correlates with reorganization of the tectonic regime during the last 1–3 Ma including tectonic escape within Anatolia, establishment of the North and East Anatolian Fault Zones bounding the Anatolian collage in mid–late Pliocene times, a contemporaneous transition from transpression to transtension and concentration of all basaltic magmatism in this region within the last 1 Ma.  相似文献   
108.
The northern Fossa Magna (NFM) basin is a Miocene rift system produced in the final stages of the opening of the Sea of Japan. It divides the major structure of Japan into two regions, with north-trending geological structures to the NE of the basin and EW trending structures to the west of the basin. The Itoigawa-Shizuoka Tectonic Line (ISTL) bounds the western part of the northern Fossa Magna and forms an active fault system that displays one of the largest slip rates (4–9 mm/year) in the Japanese islands. Deep seismic reflection and refraction/wide-angle reflection profiling were undertaken in 2002 across the northern part of ISTL in order to delineate structures in the crust, and the deep geometry of the active fault systems. The seismic images are interpreted based on the pattern of reflectors, the surface geology and velocities derived from refraction analysis. The 68-km-long seismic section suggests that the Miocene NFM basin was formed by an east dipping normal fault with a shallow flat segment to 6 km depth and a deeper ramp penetrating to 15 km depth. This low-angle normal fault originated as a comparatively shallow brittle/ductile detachment in a high thermal regime present in the Miocene. The NFM basin was filled by a thick (>6 km) accumulation of sediments. Shortening since the late Neogene is accommodated along NS to NE–SE trending thrust faults that previously accommodated extension and produce fault-related folds on their hanging wall. Based on our balanced geologic cross-section, the total amount of Miocene extension is ca. 42 km and the total amount of late Neogene to Quaternary shortening is ca. 23 km.  相似文献   
109.
冰雹是一种中小尺度的天气现象,多发生在地形复杂的山区和丘陵地带。黔西南是典型的冰雹频繁发生的多灾地带,每年发生大小冰雹天气过程几十次,尤其是个别县的某些乡镇几乎在每一次的重大天气过程中都要遭受到冰雹的袭击,显示出冰雹天气发生过程中具有明显的区域性和局地性。因此,用多普勒雷达的观测资料来分析冰雹的发生、发展和消亡过程,得出可能降雹的区域和地点,可以提高临近预报的准确性和及时性,降低冰雹灾害性天气所带来的经济损失,是非常有用的。  相似文献   
110.
This paper presents a tramework for road network change detectlon In order to upctate the Canadian National Topographic DataBase (NTDB). The methodology has been developed on the basis of road extraction from IRS-pan images (with a 5.8 m spatial resolution) by using a wavelet approach. The feature matching and conflation techniques are used to road change detection and updating. Elementary experiments have showed that the proposed framework could be used for developing an operational road database updating system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号