首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3758篇
  免费   807篇
  国内免费   777篇
测绘学   99篇
大气科学   36篇
地球物理   1823篇
地质学   1951篇
海洋学   390篇
天文学   20篇
综合类   131篇
自然地理   892篇
  2024年   15篇
  2023年   30篇
  2022年   71篇
  2021年   140篇
  2020年   191篇
  2019年   185篇
  2018年   170篇
  2017年   190篇
  2016年   170篇
  2015年   176篇
  2014年   206篇
  2013年   303篇
  2012年   183篇
  2011年   236篇
  2010年   191篇
  2009年   241篇
  2008年   229篇
  2007年   228篇
  2006年   263篇
  2005年   201篇
  2004年   197篇
  2003年   181篇
  2002年   160篇
  2001年   159篇
  2000年   134篇
  1999年   132篇
  1998年   110篇
  1997年   106篇
  1996年   99篇
  1995年   80篇
  1994年   71篇
  1993年   59篇
  1992年   42篇
  1991年   43篇
  1990年   24篇
  1989年   27篇
  1988年   16篇
  1987年   21篇
  1986年   10篇
  1985年   7篇
  1984年   11篇
  1983年   7篇
  1982年   7篇
  1981年   3篇
  1980年   5篇
  1979年   3篇
  1978年   2篇
  1977年   4篇
  1954年   3篇
排序方式: 共有5342条查询结果,搜索用时 173 毫秒
101.
As a result of the left-lateral strike-slipping of the Altyn Tagh fault in Neotectonic period, a contra-rotational structure, namely the Zhaobishan vortex structure, has developed at the juncture of the main Altyn Tagh fault and the northern fringe fault of the Qilian Mountains.Preliminary analysis on the deformation and evolution of the Zhaobishan vortex structure. In combination with the previous data, suggests that the tectonic transform between the Altyn Tagh fault and the northern fringe fault of the Qilian Mountains attributes to the deformation of the rotational structure. The existence of a series of rotational structures along the Altyn Tagh fault and on the northeastern edge of the Qinghai-Xizang(Tibet) plateau indicate that as the substance in the northern Qinghal-Xizang (Tibet) plateau moves clockwise around the eastern tectonic knot of the Himalayas, rotational structures become the principal mode on the northern marginal zone of the Plateau of transforming and absorbing tectonic deformation.  相似文献   
102.
化学腐蚀下砂岩三轴细观损伤机理及损伤变量分析   总被引:10,自引:4,他引:10  
陈四利  冯夏庭  周辉 《岩土力学》2004,25(9):1363-1367
利用CT识别技术对化学腐蚀下的砂岩进行了三轴加载全过程的即时扫描试验,得到了在不同级荷载作用下砂岩的压密、微裂纹萌生、扩展和破裂的CT图像和CT数,分析了砂岩损伤演化的细观机理。同时,建立了一个基于化学腐蚀影响和CT数的损伤变量模型。  相似文献   
103.
地域分异是地球表层大小不等、内部具有一定相似性地段之间的相互分化以及由此产生的差异。为了研究不同区位土壤侵蚀问题,从土壤生态景观及系统论出发,运用地质学、地理学、景观生态学、环境学的理论和研究方法,研究湖北省土壤侵蚀景观空间格局及其驱动因子,使土壤侵蚀问题研究提高到一个新的水平。湖北省土壤侵蚀景观具有南北分带、东西分区,为一不对称的断块一环组合,土壤流呈现向长江、江汉盆地中心轴带辐聚、单流向特点。景观空间异质性形成的首要驱动因子是大地构造背景,以房县一襄樊一广济断裂带为界,南北两侧地壳物质组成和构造发展史存在较明显的差异,现代气候带、降雨量、温热程度及土地利用等差异,造成了湖北省区域土壤地理、土壤生态的分异,形成湖北省土壤生态带、区具有南北分带,东西分区的宏观格局;其次大兴安岭一武陵山深部构造陡变带两侧新构造运动强度差异、大别造山带构造强烈隆升,导致土壤侵蚀强度的西强东弱、南北强中间弱的态势;成土母岩差异性决定了土壤可蚀性的多变;空间上“土壤侵蚀内城区”分布在湖北省的周边地区,经济贫困、管理落后,这一地区的经济水平与水土流失间形成“自反馈作用”,这一现象在我国水土保持、生态建设工作中应该引起重视。  相似文献   
104.
J. S. Mani 《Natural Hazards》2004,31(2):523-536
Chennai coast, right from the inception of Madras harbourin the year 1876, has been experiencinghostile conditions such as (i) coastal erosion, (ii) sandbar formation at the entrance to inlets, (iii) sea water ingression and (iv) change insea bed elevation, etc. In addition, construction of a new satellite harbour, about18 km north of Madras harbour has produced a negative impact on the delicatecoastal features such as (i) Pulicat lake, (ii) Ennore shoals, etc. Construction ofthis satellite harbour has led to the accumulation of sand south of the southbreakwater of the harbour and its accelerated growth is of concern to an inletlocated 2.6~km south of the harbour. `Coastal erosion', a perennial problemassociated with north Chennai sea front for the past 100 years has been addressedin this paper. The paper discusses on a long term solution and details of themethodologies to be adopted for effective management of the coast. Thesolution presented in this paper is based on numerical model study consideringthe nearshore currents and wave induced sediment transports.  相似文献   
105.
本文描述北京北部燕山地区怀柔长园杂岩体及围岩构造变形迹象 ,并对其成因进行了初步分析。认为中、晚侏罗世时期构造应力场的变化是杂岩体内岩石构造变形的主要因素 ,并以此为根据为该地区燕山期构造 岩浆事件序列的建立提供部分证据。  相似文献   
106.
Three conflicting models are currently proposed for the location and tectonic setting of the Eurasian continental margin and adjacent Tethys ocean in the Balkan region during Mesozoic–Early Tertiary time. Model 1 places the Eurasian margin within the Rhodope zone relatively close to the Moesian platform. A Tethyan oceanic basin was located to the south bordering a large “Serbo-Pelagonian” microcontinent. Model 2 correlates an integral “Serbo-Pelagonian” continental unit with the Eurasian margin and locates the Tethys further southwest. Model 3 envisages the Pelagonian zone and the Serbo-Macedonian zone as conjugate continental units separated by a Tethyan ocean that was sutured in Early Tertiary time to create the Vardar zone of northern Greece and former Yugoslavia. These published alternatives are tested in this paper based on a study of the tectono-stratigraphy of a completely exposed transect located in the Voras Mountains of northernmost Greece. The outcrop extends across the Vardar zone, from the Pelagonian zone in the west to the Serbo-Macedonian zone in the east.Within the Voras Massif, six east-dipping imbricate thrust sheets are recognised. Of these, Units 1–4 correlate with the regional Pelagonian zone in the west (and related Almopias sub-zone). By contrast, Units 5–6 show a contrasting tectono-stratigraphy and correlate with the Paikon Massif and the Serbo-Macedonian zone to the east. These units form a stack of thrust sheets, with Unit 1 at the base and Unit 6 at the top. Unstacking these thrust sheets places ophiolitic units between the Pelagonian zone and the Serbo-Macedonian zone, as in Model 3. Additional implications are, first, that the Paikon Massif cannot be seen as a window of Pelagonian basement, as in Model 1, and, secondly, Jurassic andesitic volcanics of the Paikon Massif locally preserve a gneissose continental basement, ruling out a recently suggested origin as an intra-oceanic arc.We envisage that the Almopias (Vardar) ocean rifted in Triassic time, followed by seafloor spreading. The Almopias ocean was consumed beneath the Serbo-Macedonian margin in Jurassic time, generating subduction-related arc volcanism in the Paikon Massif and related units. Ophiolites were emplaced onto the Pelagonian margin in the west and covered by Late Jurassic (pre-Kimmeridgian) conglomerates. Other ophiolitic rocks formed within the Vardar zone (Ano Garefi ophiolite, Unit 4) in latest Jurassic–Early Cretaceous time and were not deformed until Early Tertiary time. The Vardar zone finally sutured in the Early Tertiary creating the present imbricate thrust structure of the Voras Mountains.  相似文献   
107.
The Armutlu Peninsula and adjacent areas in NW Turkey play a critical role in tectonic reconstructions of the southern margin of Eurasia in NW Turkey. This region includes an inferred Intra-Pontide oceanic basin that rifted from Eurasia in Early Mesozoic time and closed by Late Cretaceous time. The Armutlu Peninsula is divisible into two metamorphic units. The first, the Armutlu Metamorphics, comprises a ?Precambrian high-grade metamorphic basement, unconformably overlain by a ?Palaeozoic low-grade, mixed siliciclastic/carbonate/volcanogenic succession, including bimodal volcanics of inferred extensional origin, with a possibly inherited subduction signature. The second unit, the low-grade znik Metamorphics, is interpreted as a Triassic rift infilled with terrigenous, calcareous and volcanogenic lithologies, including basalts of within-plate type. The Triassic rift was unconformably overlain by a subsiding Jurassic–Late Cretaceous (Cenomanian) passive margin including siliciclastic/carbonate turbidites, radiolarian cherts and manganese deposits. The margin later collapsed to form a flexural foredeep associated with the emplacement of ophiolitic rocks in Turonian time. Geochemical evidence from meta-basalt blocks within ophiolite-derived melange suggests a supra-subduction zone origin for the ophiolite. The above major tectonic units of the Armutlu Peninsula were sealed by a Maastrichtian unconformity. Comparative evidence comes from the separate Almacık Flake further east.Considering alternatives, it is concluded that a Mesozoic Intra-Pontide oceanic basin separated Eurasia from a Sakarya microcontinent, with a wider Northern Neotethys to the south. Lateral displacement of exotic terranes along the south-Eurasian continental margin probably also played a role, e.g. during Late Cretaceous suturing, in addition to overthrusting.  相似文献   
108.
In southern Turkey ongoing differential impingement of Arabia into the weak Anatolian collisional collage resulting from subduction of the Neotethyan Ocean has produced one of the most complex crustal interactions along the Alpine–Himalayan Orogen. Several major transforms with disputed motions, including the northward extension of the Dead Sea Fault Zone (DSFZ), meet in this region. To evaluate neotectonic motion on the Amanos and East Hatay fault zones considered to be northward extensions of the DSFZ, the palaeomagnetism of volcanic fields in the Karasu Rift between these faults has been studied. Remanence carriers are low-Ti magnetites and all except 5 of 51 basalt lavas have normal polarity. Morphological, polarity and K–Ar evidence show that rift formation occurred largely during the Brunhes chron with volcanism concentrated at 0.66–0.35 Ma and a subsidiary episode at 0.25–0.05. Forty-four units of normal polarity yield a mean of D/I=8.8°/54.7° with inclination identical to the present-day field and declination rotated clockwise by 8.8±4.0°. Within the 15-km-wide Hassa sector of the Karasu Rift, the volcanic activity is concentrated between the Amanos and East Hatay faults, both with left lateral motions, which have rotated blocks bounded by NW–SE cross faults in a clockwise sense as the Arabian Block has moved northwestwards. An average lava age of 0.5 Ma yields a minimum cumulative slip rate on the system bounding faults of 0.46 cm/year according with the rate deduced from the Africa–Arabia Euler vector and reduced rates of slip on the southern extension of the DSFZ during Plio-Quaternary times. Estimates deduced from offsets of dated lavas flows and morphological features on the Amanos Fault Zone [Tectonophysics 344 (2002) 207] are lower (0.09–0.18 cm/year) probably because they are limited to surface fault breaks and do not embrace the seismogenic crust.Results of this study suggest that most strike slip on the DSFZ is taken up by the Amanos–East Hatay–Afrin fault array in southern Turkey. Comparable estimates of Quaternary slip rate are identified on other faults meeting at an unstable FFF junction (DSFZ, East Anatolian Fault Zone, Karatas Fault Zone). A deceleration in slip rate across the DSFZ and its northward continuation during Plio-Quaternary times correlates with reorganization of the tectonic regime during the last 1–3 Ma including tectonic escape within Anatolia, establishment of the North and East Anatolian Fault Zones bounding the Anatolian collage in mid–late Pliocene times, a contemporaneous transition from transpression to transtension and concentration of all basaltic magmatism in this region within the last 1 Ma.  相似文献   
109.
The northern Fossa Magna (NFM) basin is a Miocene rift system produced in the final stages of the opening of the Sea of Japan. It divides the major structure of Japan into two regions, with north-trending geological structures to the NE of the basin and EW trending structures to the west of the basin. The Itoigawa-Shizuoka Tectonic Line (ISTL) bounds the western part of the northern Fossa Magna and forms an active fault system that displays one of the largest slip rates (4–9 mm/year) in the Japanese islands. Deep seismic reflection and refraction/wide-angle reflection profiling were undertaken in 2002 across the northern part of ISTL in order to delineate structures in the crust, and the deep geometry of the active fault systems. The seismic images are interpreted based on the pattern of reflectors, the surface geology and velocities derived from refraction analysis. The 68-km-long seismic section suggests that the Miocene NFM basin was formed by an east dipping normal fault with a shallow flat segment to 6 km depth and a deeper ramp penetrating to 15 km depth. This low-angle normal fault originated as a comparatively shallow brittle/ductile detachment in a high thermal regime present in the Miocene. The NFM basin was filled by a thick (>6 km) accumulation of sediments. Shortening since the late Neogene is accommodated along NS to NE–SE trending thrust faults that previously accommodated extension and produce fault-related folds on their hanging wall. Based on our balanced geologic cross-section, the total amount of Miocene extension is ca. 42 km and the total amount of late Neogene to Quaternary shortening is ca. 23 km.  相似文献   
110.
Tortonian calcarenites of the Betic Cordillera were deposited in coastal or very shallow marine environments and represent an ideal marker for estimating vertical movements from the late Miocene to the Present. A map showing the heights at which these Tortonian marine rocks are situated has a clear correlation with the present relief, indicating that today's relief has been formed since the Tortonian. There is also a good correlation between present relief and the Bouguer anomaly distribution in the Betic Cordillera, as well as with crustal thickness. Likewise, the present relief is directly related to the geodynamic setting of a horizontal N–S to NNW–SSE compression and an almost perpendicular extension, along with isostatic readjustment, existing in the Betic Cordillera from the Tortonian. As a result of these regional stresses, faults and folds have produced notable vertical movements. The highest rates of uplift of the Betic Cordillera coincide with large antiforms, in particular those of the Sierra Nevada and the Sierra Filabres. Several subsiding sectors also exist (for example, the Granada Basin or the Guadalquivir Basin). The foreland Guadalquivir Basin has a complex history because the uplift in its eastern sector and subsidence in the western sector coexisted during the late Tortonian. Today the whole Betic Cordillera is characterized by differential regional uplift, even in the aforementioned subsiding sectors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号