首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   267篇
  免费   22篇
  国内免费   13篇
测绘学   15篇
大气科学   8篇
地球物理   119篇
地质学   100篇
海洋学   16篇
综合类   9篇
自然地理   35篇
  2024年   1篇
  2023年   5篇
  2022年   5篇
  2021年   7篇
  2020年   13篇
  2019年   6篇
  2018年   12篇
  2017年   10篇
  2016年   9篇
  2015年   5篇
  2014年   18篇
  2013年   27篇
  2012年   6篇
  2011年   16篇
  2010年   13篇
  2009年   19篇
  2008年   21篇
  2007年   12篇
  2006年   16篇
  2005年   7篇
  2004年   10篇
  2003年   6篇
  2002年   12篇
  2001年   5篇
  2000年   6篇
  1999年   7篇
  1998年   7篇
  1997年   6篇
  1996年   5篇
  1995年   3篇
  1994年   4篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
排序方式: 共有302条查询结果,搜索用时 140 毫秒
31.
三峡区域气温变化长期以来受到科研人员和公众的关注。受三峡复杂地形的影响,仅仅基于气象站点观测数据很难准确获取区域气温变化的空间格局,遥感技术则可以通过提供空间连续的地表观测数据来辅助气温变化分析。以广义加性模型GAM (General Additive Model)为插值算法,以高程和夜间地表温度(LSTnight)遥感产品为辅助变量,估算三峡库区1979年—2014年1 km空间分辨率的月气温数据,在此基础上分析了气温变化趋势的时空特征及其与高程和森林覆盖率的关系。研究表明,(1)在插值算法中引入遥感产品LSTnight作为辅助变量可以明显改善气温估算精度,冬春季的改善幅度高于夏秋季;(2)三峡库区年平均气温在1997年后明显上升,但在2003年库区蓄水后无明显变化趋势,几乎所有月(除12月以外)的气温都呈现上升趋势,增温趋势最显著是3月和9月,3月增温主要来自于库区东部山区的贡献,而9月增温主要来自于库区西部平原的贡献;(3)多数月份(除7月、8月、9月以外)的低温上升速度超过高温上升速度,导致区域气温的动态变化范围缩小;(4)三峡库区年平均气温上升速度与高程呈正相关,即海拔越高,升温越快,但在同一海拔高度处,森林覆盖率越高,年均气温上升速度越慢,暗示森林具有抑制增温的作用。  相似文献   
32.
Yezin Dam is a man-made reservoir located close to Yezin village in Myanmar. Its water is used for irrigation, domestic purposes and as drinking water for many urban communities in the watershed area. In recent years, increased pollution due to the concurrent development around the dam has led to water quality deterioration. No detailed study on the distribution of cyanobacteria and toxin production has been conducted so far. In order to provide insight into the extent of cyanobacteria and cyanotoxins in the dam, water samples were collected once in January 2014 for the isolation of cyanobacterial strains and eight times between March 2017 and June 2018 for the investigation of physical, chemical and biological parameters. A total of 99 phytoplankton taxa belonging to 50 genera were recorded from Yezin Dam. Microscopic examination showed that a Dolichospermum sp. was the dominant cyanobacterium followed by small numbers of Microcystis, and Raphidiopsis raciborskii in all samples throughout the sampling period. 15 isolated cyanobacterial strains were classified morphologically and phylogenetically as Dolichospermum smithii, R. raciborskii and Microcystis and tested for microcystins (MCs), cylindrospermopsins (CYNs), saxitoxins (STXs) and anatoxins (ATXs) by liquid chromatography-tandem mass spectrometry (LC–MS/MS) and enzyme-linked immunosorbent assay (ELISA). The toxin analysis of all isolated Dolichospermum strains by ELISA and LC–MS did not indicate the presence of ATXs, STXs, CYNs nor MCs. Four of the five isolated Raphidiopsis strains produced CYN and deoxyCYN. One of the isolated Microcystis strains (AB2017/08) from Yezin Dam produced 22 MC congeners. Concentrations of 0.12 μg L−1 CYNs and 0.34 μg L−1 MCs were also found in an environmental sample from Yezin Dam by ELISA. The potential therefore exists for the use of untreated water from Yezin Dam to cause harmful effects on humans, domestic and wild animals.  相似文献   
33.
Large dams and reservoirs alter not only the natural flow regimes of streams and rivers but also their flooding cycles and flood magnitudes. Although the effect of dams and reservoirs has been reported for some vulnerable locations, the understanding of the inner-basin variation with respect to the effects remains limited. In this study, we analyse the Three Gorges Dam (TGD) built on the Changjiang mainstream (Yangtze River) to investigate the dam effect variations in the system of interconnected water bodies located downstream. We investigated the effect of flow alterations along the downstream river network using discharge time series at different gauging stations. The river–lake interactions (referring to the interactions between the Changjiang mainstream and its tributary lakes i.e. the Dongting and Poyang lakes) and their roles in modifying the TGD effect intensity were also investigated in the large-scale river–lake system. The results show that the water storage of the tributary lakes decreased after the activation of the TGD. Severe droughts occurred in the lakes, weakening their ability to recharge the Changjiang mainstream. As a consequence, the effect of the TGD on the Changjiang flow increase during the dry season diminished quickly downstream of the dam, whereas its impact on the flow decrease during the wet season gradually exacerbated along the mainstream, especially at sites located downstream of the lake outlets. Therefore, when assessing dam-induced hydrological changes, special attention should be paid to the changes in the storage of tributary lakes and the associated effects in the mainstream. This is of high importance for managing the water resource trade-offs between different water bodies in dam-affected riverine systems.  相似文献   
34.
The dynamic responses of wetlands to upstream water conservancy projects are becoming increasingly crucial for watershed management. Poyang Lake is a dynamic wetland system of critical ecological importance and connected with the Yangtze river. However, in the context of disturbed water regime in Poyang Lake resulting from human activities and climate change, the responses of vegetation dynamics to the Three Gorges Dam (TGD) have not been investigated. We addressed this knowledge gap by using daily water level data and Landsat images from 1987 to 2018. Landsat images were acquired between October and December to ensure similar phenological conditions. Object-oriented Artificial Neural Network Regression for wetland classification was developed based on abundant training and validation samples. Interactions between vegetation coverage and water regimes pre and post the operation of the TGD were compared using classification and regression trees and the random forest model. Since the implementation of the TGD in 2003, Poyang Lake has become drier, especially during the dry season. A more rapid plant growth rate was observed post TGD (44.74 km2 year−1) compared to that of the entire study period (12.9 km2 year−1). Average water level for the antecedent 20 days most significantly affected vegetation before 2003, whereas average water level for the antecedent 5 or 10 days was more important after 2003. The impoundment of the TGD after the flood season accelerated the drawdown processes of Poyang Lake, and the rapidly exposed wetlands accelerated vegetation expansion during the dry seasons, resulting in shrinkage and degradation of the lake area. This study deepens our knowledge of the influences of newly developed dams on lakes and rivers.  相似文献   
35.
Over the next two decades, China, the country with the world’s largest urban population, is orchestrating the urbanization of some 300 million rural people. In its National New-Type Urbanization Plan (2014) the State Council has outlined a range of strategies to grow its cities not least of which is rural-to-urban migration. This plan will have significant effects on other types of displacement, particularly, the forced displacement and resettlement of those living in the path of large dams. This paper reviews what is known about New-Type Urbanization Approach to Reservoir Resettlement. Then, based on a longitudinal study of 145 resettled households at the Three Gorges Dam, the livelihood effects of rural-to-urban resettlement are unpacked to provide lessons for its use in advancing urbanization. It finds that rural-to-urban resettlers have lower incomes than their urban-to-urban and rural-to-rural counterparts, and higher rates of food and income insecurity.  相似文献   
36.
Changes in the level of the Yangtze River caused by anthropogenic water regulation have major effects on the hydrological processes and water cycle in surrounding lakes and rivers. In this study, we obtained isotopic evidence of changes in the water cycle of Yangtze River during the two drought years of 2006 and 2013. Isotopic evidence demonstrated that the δ18O and δD levels in Yangtze River exhibited high spatial heterogeneity from the upper to lower reaches, which were controlled by atmospheric precipitation, tributary/lake water mixing, damming regulation, and water temperature. Both the slope and intercept of Yangtze River evaporative line (δD = 7.88 δ18O + 7.96) were slightly higher than those of local meteoric water line of Yangtze River catchment (δD = 7.41 δ18O + 6.01). Most of the river isotopic values were located below the local meteoric water line, thereby implying that the Yangtze River water experienced a certain degree of evaporative enrichment on isotopic compositions of river water. The high fluctuations in the isotopic composition (e.g., deuterium excess [d‐excess]) in the middle to lower reaches during the initial stage of operation for the Three Gorges Dams (2003–2006) were due to heterogeneous isotopic signatures from the upstream water. In contrast to the normal stage (after 2010) characterized by the maximum water level and largest water storage, a relatively small variability in the deuterium excess was found along the middle to lower reaches because of the homogenization of reservoir water with a longer residence time and complete mixing. The effects of water from lakes and tributaries on the isotopic compositions in mainstream water were highlighted because of the high contributions of lakes water (e.g., Dongting Lake and Poyang Lake) efflux to the Yangtze River mainstream, which ranged from 21% to 85% during 2006 and 2013. These findings suggest that the retention and regulation of the Three Gorges Dams has greatly buffered the isotopic variability of the water cycle in the Yangtze catchment, thereby improving our understanding of the complex lake–river interactions along the middle to lower reaches in the future.  相似文献   
37.
引入小波分析方法对大坝变形监测数据的处理,实现了对离散型的变形数据的尺度分解,对变形趋势的分析。并且对变形数据在滤波、消噪等方面,对分解层次中的偶然误差特性分析,以及阀值的选取方法进行了比较,表明利用小波变换的方法对变形数据的分析处理是有效、可行的。  相似文献   
38.
Elucidating the influence of dams on fluvial processes can inform river protection and basin management. However, relatively few studies have focused on how multiple factors interact to affect the morphological evolution of meandering reaches. Using hydrological and topographical data, we analyzed the factors that influence and regulate the meandering reaches downstream the Three Gorges Dam (TGD). Our conclusions are as follows. (1) The meandering reaches can be classified into two types based on their evolution during the pre-dam period: G1 reaches, characterized by convex point bar erosion and concave channel deposition (CECD), and G2 reaches, characterized by convex point bar deposition and concave channel erosion (CDCE). Both reach types exhibited CECD features during the post-dam period. (2) Flow processes and sediment transport are the factors that caused serious erosion of the low beaches located in the convex point bars. However, changes in the river regime, river boundaries and jacking of Dongting Lake do not act as primary controls on the morphological evolution of the meandering reaches. (3) Flood discharges ranging from 20,000 to 25,000 m3/s result in greater erosion of convex point bars. The point bars become scoured if the durations of these flows, which are close to bankfull discharge, exceed 20 days. In addition, the reduction in bedload causes the decreasing of point bar siltation in the water-falling period. (4) During the post-dam period, flood abatement, the increased duration of discharges ranging from 20,000 to 25,000 m3/s, and a significant reduction in sediment transport are the main factors that caused meandering reaches to show CECD features. Our results are relevant to other meandering reaches, where they can inform estimates of riverbed change, river management strategies and river protection.  相似文献   
39.
Forced vibration field tests and finite-element studies were conducted on the Shahid Rajaee concrete arch dam in Northern Iran to determine the dynamic properties of the dam–reservoir–foundation system. The first forced vibration tests on the dam were performed with two different types of exciter units, with a limited maximum force, bolted on the dam crest for alternative in-phase and out-of-phase sequencing. Because of an insufficient number of recording sensors, two arrangements of sensors were used to cover sufficient points on the dam crest and one gallery during tests. Two kinds of vibration tests, on–off and frequency sweeping, were carried out on the dam. The primary natural frequencies of the coupled system for both symmetric and anti-symmetric vibration modes were approximated during on–off tests in two types of sequencing of exciters, in phase and out-of-phase, with a maximum frequency of 14 Hz. The principal forced vibration tests were performed at precise resonant frequencies based on the results of the on–off tests in which sweeping around the approximated frequencies at 0.1 Hz increments was performed. Baseline correction and suitable bandpass filtering were applied to the test records and then signal processing was carried out to compute the auto power, cross power and coherence spectra. Nine middle modes of vibration of the coupled system and corresponding damping ratios were estimated. The empirical results are compared against the results from calibrated finite-element modeling of the system using former ambient vibration tests, considering the dam–reservoir–foundation interaction effects. Good agreement is obtained between experimental and numerical results for eight middle modes of the dam–reservoir–foundation system.  相似文献   
40.
The transient analysis of dam–reservoir systems by employing perfectly matched layers has been investigated. In previous studies, boundary conditions of the PML region in the reservoir have been neglected. In this paper, they are incorporated completely in the formulation. Moreover, a technique is introduced to involve the effect of incident waves caused by vertical ground motions at the reservoir bottom in the analysis. Performing several numerical experiments indicates that applying boundary conditions of the PML domain and utilizing the proposed method for vertical excitation cases reduce the computational cost significantly and make the PML method a very efficient approach for the transient analysis of dam–reservoir systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号