首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   197篇
  免费   6篇
  国内免费   28篇
地球物理   18篇
地质学   164篇
海洋学   41篇
综合类   6篇
自然地理   2篇
  2020年   6篇
  2019年   3篇
  2018年   7篇
  2017年   7篇
  2016年   9篇
  2015年   4篇
  2014年   3篇
  2013年   20篇
  2012年   3篇
  2011年   12篇
  2010年   9篇
  2009年   14篇
  2008年   12篇
  2007年   12篇
  2006年   14篇
  2005年   18篇
  2004年   10篇
  2003年   9篇
  2002年   10篇
  2001年   9篇
  2000年   2篇
  1999年   5篇
  1998年   6篇
  1997年   4篇
  1996年   5篇
  1995年   5篇
  1994年   3篇
  1993年   3篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   2篇
  1986年   1篇
  1978年   1篇
排序方式: 共有231条查询结果,搜索用时 15 毫秒
21.
This article presents the developments of an ongoing research aimed at modelling the influence of fissuring on the behaviour of clays. In particular, it recalls the main results of an extensive laboratory investigation on a fissured bentonite clay from the south of Italy and presents the data of a new investigation on the evolution with shearing of the strain fields developing within the clay, resulting from Digital Image Correlation (DIC). Element test results are analysed in the framework of continuum mechanics and linked to the clay fissuring features, once characterised using the Fissuring IDentity (F‐ID) chart. This article compares the bentonite behaviour with that of other fissured clays of different F‐IDs, highlighting the common behavioural features. Thereafter, the soil response at the macro level is related to the DIC‐derived strain fields evolving within the clay with loading. For this purpose, DIC was successfully used to investigate the deformation processes active in the fissured clay and the sources of the localisation phenomena. DIC is shown to provide indications of the extent to which highly to medium fissured clays element test results can be of use to model the clay behaviour according to continuum mechanics. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
22.
Silt is available in many parts of the world in combination with sands and clays. However, due to lack of clear understanding of its engineering behaviour, most of the time it is interpreted in terms of either sands or clays. Structures that are usually built on silty soils are designed to take into account design procedures developed for sandy or clayey soils. Presence of silts in combination with varying amount of sand and clays produces silt that is either plastic or non-plastic in nature. Silt is available in and around the Delhi region, in a majority mixture along with fine sands, which is non-plastic in nature. On the other hand silty deposits found in offshore Bombay High region are found in abundance along with significant amounts of clays and are termed as plastic silts. In this paper a comparison of the stress-strain behaviour of plastic and non-plastic silts is carried out under triaxial compression loading during both drained and undrained conditions. Two representative samples each from Delhi and Bombay High regions were considered for this comparison and results of stress-strain under four sets of confining pressure are discussed in detail. It is observed from this study that behaviour of silts is mainly dependent on the composition and structure of the resultant soil matrix. It is concluded from the results that shear strength parameters as well as volume change/pore pressure response of silty soils is dominated by the constituent soil present along with the silt. It is seen from the comparative behaviour of non-plastic and plastic silts that the presence of sand and clays has a governing effect on pore pressure development and the resultant friction angle. The study also corroborated that the nature of silt is transitional both in the case of plastic and non-plastic forms.  相似文献   
23.
Temperature changes are known to induce specific couplings in clay, in particular, an anomalously high thermal pressurization in undrained conditions or a thermal compaction in drained conditions, both of which are potential threats for the mechanical stability and sealing capacity of the geomaterials. Thermodynamical analysis of those peculiar thermomechanical couplings points to a potentially important latent energy, which in turn could limit the temperature change upon heating or cooling. The direct measurement of latent energy developed during a laboratory geomechanical test is challenging. Instead, proper identification of thermal hardening in conventional experiments with temperature changes provides an alternative route to estimate latent energy. In this work, existing laboratory thermomechanical tests of clays are analyzed with a rigorous thermodynamic framework to quantify the magnitude of latent energy in thermomechanically loaded clays. A thermodynamically consistent constitutive model for fully saturated clays that combines two key features, (a) the temperature dependence of the blocked energy and (b) the framework of bounding plasticity, is proposed. The performance of the model is validated by reproducing results obtained in laboratory tests for Boom and Opalinus clays. The thermomechanical loads considered to validate the model performance were then used to estimate the percentage of work that remains latent in the clayey material during plastic yielding. We find that the magnitude of latent energy is quite significant, typically a few tens of percent of the total dissipated energy, and increases significantly with temperature. Accordingly, it is expected to play an important role in the thermomechanical response of clays.  相似文献   
24.
25.
Laboratory consolidation of structured clayey soils is analysed in this paper. The research is carried out by two different methods. The first one treats the soil as an isotropic homogeneous equivalent Double Porosity (DP) medium. The second method rests on the extensive application of the Finite Element Method (FEM) to combinations of different soils, composing 2D or fully 3D ordered structured media that schematically discretize the complex material. Two reference problems, representing typical situations of 1D laboratory consolidation of structured soils, are considered. For each problem, solution is obtained through integration of the equations governing the consolidation of the DP medium as well as via FEM applied to the ordered schemes composed of different materials. The presence of conventional experimental devices to ensure the drainage of the sample is taken into account through appropriate boundary conditions. Comparison of FEM results with theoretical results clearly points out the ability of the DP model to represent consolidation processes of structurally complex soils. Limits of applicability of the DP model may arise when the rate of fluid exchange between the two porous systems is represented through oversimplified relations. Results of computations, obtained having assigned reasonable values to the meso‐structural and to the experimental apparatus parameters, point out that a partially efficient drainage apparatus strongly influences the distribution along the sample and the time evolution of the interstitial water pressure acting in both systems of pores. Data of consolidation tests in a Rowe's cell on samples of artificially fissured clays reported in the literature are compared with the analytical and numerical results showing a significant agreement. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
26.
27.
Isothermal chemo-elasto-plasticity of clays is discussed, to describe strains induced in clay by permeation of it with a low dielectric constant organic contaminant, in the presence of stress. The strain is crucial in controlling permeability changes in chemically affected clay barriers of landfills and impoundments. The theory encompasses chemical softening or yield surface reduction, coefficient of chemical reversible expansion or contraction due to mass concentration increase, as well as chemical sensitivity of bulk plastic modulus. The experiments on chemistry and stress dependent permeability of Sarnia clay performed by Fernandez and Quigley (1985, 1991) are interpreted using this model. The numerical representations of the chemo-plastic softening function and the chemo-elastic strain function, as well as plastic bulk modulus sensitivity to concentration are evaluated for dioxane and ethanol. Specific requirements for the tests for chemo-plastic behavior of clays are discussed. © 1997 by John Wiley & Sons, Ltd.  相似文献   
28.
This paper presents a new generalized effective stress model, referred to as MIT-S1, which is capable of predicting the rate independent, effective stress–strain–strength behaviour of uncemented soils over a wide range of confining pressures and densities. Freshly deposited sand specimens compressed from different initial formation densities approach a unique condition at high stress levels, referred to as the limiting compression curve (LCC), which is linear in a double logarithmic void ratio, e, mean effective stress space, p′. The model describes irrecoverable, plastic strains which develop throughout first loading using a simple four-parameter elasto-plastic model. The shear stiffness and strength properties of sands in the LCC regime can be normalized by the effective confining pressure and hence can be unified qualitatively, with the well-known behaviour of clays that are normally consolidated from a slurry condition along the virgin consolidation line (VCL). At lower confining pressures, the model characterizes the effects of formation density and fabric on the shear behaviour of sands through a number of key features: (a) void ratio is treated as a separate state variable in the incrementally linearized elasto-plastic formulation: (b) kinematic hardening describing the evolution of anisotropic stress–strain properties: (c) an aperture hardening function controls dilation as a function of ‘formation density’; and (d) the use of a single lemniscate-shaped yield surface with non-associated flow. These features enable the model to describe characteristic transitions from dilative to contractive shear response of sands as the confining pressure increases. This paper summarizes the procedures used to select input parameters for clays and sands, while a companion paper compares model predictions with measured data to illustrate the model capability for describing the shear behaviour of clays and sands. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
29.
The action of tunnel excavation reduces the in-situ stresses along the excavated circumference and can therefore be simulated by unloading of cavities from the in-situ stress state. Increasing evidence suggests that soil behavior in the plane perpendicular to the tunnel axis can be modelled reasonably by a contracting cylindrical cavity, while movements ahead of an advancing tunnel heading can be better predicted by spherical cavity contraction theory. In the past, solutions for unloading of cavities from in-situ stresses in cohesive-frictional soils have mainly concentrated on the small strain, cylindrical cavity model. Large strain spherical cavity contraction solutions with a non-associated Mohr–Coulomb model do not seem to be widely available for tunnel applications. Also, cavity unloading solutions in undrained clays have been developed only in terms of total stresses with a linear elastic-perfectly plastic soil model. The total stress analyses do not account for the effects of strain hardening/softening, variable soil stiffness, and soil stress history (OCR). The effect of these simplifying assumptions on the predicted soil behavior around tunnels is not known. In this paper, analytical and semi-analytical solutions are presented for unloading of both cylindrical and spherical cavities from in-situ state of stresses under both drained and undrained conditions. The non-associated Mohr-Coulomb model and various critical state theories are used respectively to describe the drained and undrained stress-strain behaviors of the soils. The analytical solutions presented in this paper are developed in terms of large strain formulations. These solutions can be used to serve two main purposes: (1) to provide models for predicting soil behavior around tunnels; (2) to provide valuable benchmark solutions for verifying various numerical methods involving both Mohr–Coulomb and critical state plasticity models. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
30.
A numerical model capable of performing deformation analysis of a medium containing discontinuity surfaces is presented. The discontinuity can be either a crack, which can be open or closed, or a shear band. The model consists of two separate numerical algorithms, which are coupled together by means of the principle of superposition. In particular, an integral equation scheme based on the theory of dislocations is adopted for modelling the discontinuity, while a finite element discretization is used for the continuous medium. In this paper the discontinuity modelling is illustrated in detail, together with the specific formulation of the principle of superposition adopted, and some simple examples of application are presented. The well-known modelling approach based on Fracture Mechanics theory is also briefly discussed. The two models are compared and some advantages and drawbacks of each are pointed out, comments are made regarding their applicability in the specific case of soil mechanics, and conclusions are drawn as regards the conditions under which one or the other is appropriate. Finally, a full-scale example of deformation analysis using the proposed model is presented. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号