首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3008篇
  免费   407篇
  国内免费   1026篇
大气科学   28篇
地球物理   646篇
地质学   3245篇
海洋学   301篇
天文学   17篇
综合类   26篇
自然地理   178篇
  2024年   38篇
  2023年   83篇
  2022年   116篇
  2021年   163篇
  2020年   172篇
  2019年   196篇
  2018年   174篇
  2017年   185篇
  2016年   173篇
  2015年   159篇
  2014年   179篇
  2013年   217篇
  2012年   198篇
  2011年   154篇
  2010年   120篇
  2009年   199篇
  2008年   290篇
  2007年   229篇
  2006年   201篇
  2005年   174篇
  2004年   180篇
  2003年   110篇
  2002年   104篇
  2001年   91篇
  2000年   103篇
  1999年   70篇
  1998年   75篇
  1997年   65篇
  1996年   43篇
  1995年   26篇
  1994年   55篇
  1993年   25篇
  1992年   15篇
  1991年   5篇
  1990年   13篇
  1989年   7篇
  1988年   9篇
  1987年   2篇
  1986年   7篇
  1985年   5篇
  1984年   5篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1978年   1篇
排序方式: 共有4441条查询结果,搜索用时 15 毫秒
201.
The Esino Limestone of the western Southern Alps represents a differentiated Ladinian-Lower Carnian (?) carbonate platform comprised of margin, slope and peritidal inner platform facies up to 1000 m thick. A major regional subaerial exposure event lead to coverage by another peritidal Lower Carnian carbonate platform (Breno Formation). Multiphase dolomitization affected the carbonate sediments. Petrographic examinations identified at least three main generations of dolomites (D1, D2, and D3) that occur as both replacement and fracture-filling cements. These phases have crystal-size ranges of 3–35 μm (dolomicrite D1), 40–600 μm (eu-to subhedral crystals D2), and 200 μm to 5 mm (cavity- and fracture-filling anhedral to subhedral saddle dolomite D3), respectively.The fabric retentive near-micritic grain size coupled with low mean Sr concentration (76 ± 37 ppm) and estimated δ18O of the parent dolomitizing fluids of D1 suggest formation in shallow burial setting at temperature ∼ 45–50 °C with possible contributions from volcanic-related fluids (basinal fluids circulated in volcaniclastics or related to volcanic activity), which is consistent with its abnormally high Fe (4438 ± 4393 ppm) and Mn (1219 ± 1418 ppm) contents. The larger crystal sizes, homogenization temperatures (D2, 108 ± 9 °C; D3, 111 ± 14 °C) of primary two-phase fluid inclusions, and calculated salinity estimates (D2, 23 ± 2 eq wt% NaCl; D3, 20 ± 4 eq wt% NaCl) of D2 and D3 suggest that they formed at later stages under mid-to deeper burial settings at higher temperatures from dolomitizing fluids of higher salinity, which is supported by higher estimated δ18O values of their parent dolomitizing fluids. This is also consistent with their high Fe (4462 ± 4888 ppm; and 1091 ± 1183 ppm, respectively) and Mn (556 ± 289 ppm and 1091 ± 1183 ppm) contents, and low Sr concentrations (53 ± 31 ppm and 57 ± 24 ppm, respectively).The similarity in shale-normalized (SN) REE patterns and Ce (Ce/Ce*)SN and La (Pr/Pr*)SN anomalies of the investigated carbonates support the genetic relationship between the dolomite generations and their calcite precursor. Positive Eu anomalies, coupled with fluid-inclusion gas ratios (N2/Ar, CO2/CH4, Ar/He), high F concentration, high F/Cl and high Cl/Br molar ratios suggest an origin from diagenetic fluids circulated through volcanic rocks, which is consistent with the co-occurrence of volcaniclastic lenses in the investigated sequence.  相似文献   
202.
The double‐spike method with multi‐collector inductively coupled plasma‐mass spectrometry was used to measure the Mo mass fractions and isotopic compositions of a set of geological reference materials including the mineral molybdenite, seawater, coral, as well as igneous and sedimentary rocks. The long‐term reproducibility of the Mo isotopic measurements, based on two‐year analyses of NIST SRM 3134 reference solutions and seawater samples, was ≤ 0.07‰ (two standard deviations, 2s, n = 167) for δ98/95Mo. Accuracy was evaluated by analyses of Atlantic seawater, which yielded a mean δ98/95Mo of 2.03 ± 0.06‰ (2s, n = 30, relative to NIST SRM 3134 = 0‰) and mass fraction of 0.0104 ± 0.0006 μg g?1 (2s, n = 30), which is indistinguishable from seawater samples taken world‐wide and measured in other laboratories. The comprehensive data set presented in this study serves as a reference for quality assurance and interlaboratory comparison of high‐precision Mo mass fractions and isotopic compositions.  相似文献   
203.
The Lamont‐Doherty Earth Observatory radiogenic isotope group has been systematically measuring Sr‐Nd‐Pb‐Hf isotopes of USGS reference material BCR‐2 (Columbia River Basalt 2), as a chemical processing and instrumental quality control monitor for isotopic measurements. BCR‐2 is now a widely used geochemical inter‐laboratory reference material (RM), with its predecessor BCR‐1 no longer available. Recognising that precise and accurate data on RMs is important for ensuring analytical quality and for comparing data between different laboratories, we present a compilation of multiple digestions and analyses made on BCR‐2 during the first author's dissertation research. The best estimates of Sr, Nd and Hf isotope ratios and measurement reproducibilities, after filtering at the 2s level for outliers, were 87Sr/86Sr = 0.705000 ± 11 (2s, 16 ppm, n = 21, sixteen digestions, one outlier), 143Nd/144Nd = 0.512637 ± 13 (2s, 25 ppm, n = 27, thirteen digestions, one outlier) and 176Hf/177Hf = 0.282866 ± 11 (2s, 39 ppm, n = 25, thirteen digestions, no outliers). Mean Nd and Hf values were within error of those reported by Weis et al. (2006, 2007) in their studies of RMs; mean Sr values were just outside the 2s uncertainty range of both laboratories. Moreover, a survey of published Sr‐Nd‐Hf data shows that our results fall within the range of reported values, but with a smaller variability. Our Pb isotope results on acid leached BCR‐2 aliquots (n = 26, twelve digestions, two outliers) were 206Pb/204Pb = 18.8029 ± 10 (2s, 55 ppm), 207Pb/204Pb = 15.6239 ± 8 (2s, 52 ppm), 208Pb/204Pb = 38.8287 ± 25 (2s, 63 ppm). We confirm that unleached BCR‐2 powder is contaminated with Pb, and that sufficient leaching prior to digestion is required to achieve accurate values for the uncontaminated Pb isotopic compositions.  相似文献   
204.
新疆东准噶尔琼河坝地区近年来找矿获得重大突破,发现了一系列重要的矿产,这些矿产基本上围绕该地区出露面积最大的乌须克劳格岩体分布。该岩体组成比较复杂,主要岩性为二长花岗岩和花岗闪长岩。采用LA-ICP-MS技术测得花岗闪长岩和二长花岗岩锆石~(206)Pb/~(238)U年龄分别为428.9±1.9Ma和427.2±1.7Ma,被解释为岩石的结晶年龄。2类岩石都属于过铝质-钙碱性系列花岗岩,具有较高的铝、钙含量,K_2O/Na_2O值普遍偏低,介于0.15~0.40之间;稀土元素配分曲线呈现右倾特征,稀土元素总量较低,轻稀土元素相对富集,负Eu异常不明显;在微量元素原始地幔标准化蛛网图上,高场强元素Th、Nb、Ta、P、Ti等相对亏损,大离子亲石元素Rb、Ba、U、K、Sr等相对富集,具有高Ba、Sr含量和高(La/Yb)_N、Sr/Y值,显示出高Ba-Sr花岗岩的特征;同时岩体具有高正ε_(Hf)(t)值和年轻的模式年龄。这些地球化学和同位素特征表明,晚志留世乌须克劳格岩体是大陆边缘弧环境下大洋板片熔融的产物。  相似文献   
205.
藏南错那淡色花岗岩位于喜马拉雅造山带的东部。对其进行LA-MC-ICP-MS锆石U-Pb定年,结果显示,结晶年龄为17.7±0.3Ma,代表中新世的地壳深熔作用。淡色花岗岩样品具有高的Si O2(74.46%~75.57%)、Al2O3(14.07%~14.64%)和K2O(4.19%~4.85%)含量,高的K2O/Na2O值(1.09~1.31)和A/CNK值(1.15~1.25),富集Rb、Th和U,亏损Ba、Nb、Sr、Zr等元素,显示高的Rb/Sr值(17.75~29.50)和强烈的负Eu异常(δEu=0.18~0.26),属于壳源成因的高钾钙碱性过铝质S型花岗岩。样品具有高的Isr值(0.78982~0.79276)和低的εNd(t)值(-19.5~-18.2),可与大喜马拉雅结晶杂岩(GHC)中的变泥质岩对比,暗示其来自变泥质岩的部分熔融。样品的Isr值较高,而Sr浓度较低,且随着Ba浓度的增加,Rb/Sr值逐渐降低,表明淡色花岗岩是无水条件下白云母部分熔融的产物,部分熔融可能与藏南拆离系(STDS)伸展拆离导致的构造减压有关。错那淡色花岗岩的形成反映了地壳伸展减薄背景下,构造减压导致的中下地壳中含水矿物脱水熔融,并沿STDS上升侵位的动力学过程。  相似文献   
206.
The Sidingheishan mafic-ultramafic intrusion is located in the eastern part of the Northern Tianshan Mountain, along the southern margin of the Central Asian Orogenic Belt in northern Xinjiang autonomous region of China. The Sidingheishan intrusion is mainly composed of wehrlite, olivine websterite, olivine gabbro, gabbro and hornblende gabbro. At least two pulses of magma were involved in the formation of the intrusion. The first pulse of magma produced an olivine-free unit and the second pulse produced an olivine-bearing unit. The magmas intruded the Devonian granites and granodiorites.An age of 351.4±5.8 Ma(Early Carboniferous) for the Sidingheishan intrusion has been determined by U-Pb SHRIMP analysis of zircon grains separated from the olivine gabbro unit. A U-Pb age of 359.2±6.4 Ma from the gabbro unit has been obtained by LA-ICP-MS. Olivine of the Sidingheishan intrusion reaches 82.52 mole% Fo and 1414 ppm Ni. On the basis of olivine-liquid equilibria, it has been calculated that the MgO and FeO included in the parental magma of a wehrlite sample were approximately10.43 wt% and 13.14 wt%, respectively. The Sidingheishan intrusive rocks are characterized by moderate enrichments in Th and Sm, slight enrichments in light REE, and depletions in Nb, Ta, Zr and Hf. The ε_(Nd)(t) values in the rock units vary from +6.70 to +9.64, and initial ~(87)Sr/~(86)Sr ratios range between 0.7035 and0.7042. Initial ~(206)Pb/~(204)Pb, ~(207)Pb/~(204)Pb and ~(208)Pb/~(204)Pb values fall in the ranges of 17.23-17.91,15.45-15.54 and 37.54-38.09 respectively. These characteristics are collectively similar to the Heishan intrusion and the Early Carboniferous subduction related volcanic rocks in the Santanghu Basin, North Tianshan and Beishan area. The low(La/Gd)_(PM) values between 0.26 and 1.77 indicate that the magma of the Sidingheishan intrusion was most likely derived from a depleted spinel-peridotite mantle.(Th/Nb)_(PM)ratios from 0.59 to 20.25 indicate contamination of the parental magma in the upper crust.Crystallization modeling methods suggest that the parental magma of the Sidingheishan intrusion was generated by flush melting of the asthenosphere and subsequently there was about 10 vol%contamination from a granitic melt. This was followed by about 5 vol% assimilation of upper crustal rocks. Thus, the high-Mg basaltic parental magma of Sidingheishan intrusion is interpreted to have formed from partial melting of the asthenosphere during the break-off of a subducted slab.  相似文献   
207.
The Zedong ophiolites in the eastern Yarlung–Zangbo suture zone of Tibet represent a mantle slice of more than 45 km~2. This massif consists mainly of mantle peridotites, with lesser gabbros, diabases and volcanic rocks. The mantle peridotites are mostly harzburgite, lherzolite; a few dike-like bodies of dunite are also present. Mineral structures show that the peridotites experienced plastic deformation and partial melting. Olivine(Fo89.7–91.2), orthopyroxene(En_(88–92)), clinopyroxene(En_(45–49) Wo_(47–51) Fs_(2–4)) and spinel [Mg~#=100×Mg/(Mg+Fe)]=49.1–70.7; Cr~#=(100×Cr/(Cr+Al)=18.8–76.5] are the major minerals. The degree of partial melting of mantle peridotites is 10%–40%, indicating that the Zedong mantle peridotites may experience a multi–stage process. The peridotites are characterized by depleted major element compositions and low REE content(0.08–0.62 ppm). Their "spoon–shaped" primitive–mantle normalized REE patterns with(La/Sm)_N being 0.50–6.00 indicate that the Zedong ultramafic rocks belong to depleted residual mantle rocks. The PGE content of Zedong peridotites(18.19–50.74 ppb) is similar with primary mantle with Pd/Ir being 0.54–0.60 and Pt/Pd being 1.09–1.66. The Zedong peridotites have variable, unradiogenic Os isotopic compositions with ~(187)Os/~(188)Os=0.1228 to 0.1282. A corollary to this interpretation is that the convecting upper mantle is heterogeneous in Os isotopes. All data of the Zedong peridotites suggest that they formed originally at a mid-ocean ridge(MOR) and were later modified in supra–subduction zone(SSZ) environment.  相似文献   
208.
Volcanism along the northwest boundary of the Arabian Plate found in the Gaziantep Basin, southeast Turkey, is of Miocene age and is of alkaline and calc-alkaline basic composition. The rare earth element data for both compositional series indicates spinel–peridotite source areas. The rare earth and trace elements of the alkaline lavas originate from a highly primitive and slightly contaminated asthenospheric mantle; those of the calc-alkaline lavas originate from a highly heterogeneous, asthenospheric, and lithospheric mantle source. Partial melting and magmatic differentiation processes played a role in the formation of the petrological features of these volcanics. These rocks form two groups on the basis of their ~(87) Sr/~(86) Sr and ~(143) Nd/~(144) Nd isotopic compositions in addition to their classifications based on their chemical compositions(alkaline and calc-alkaline). These isotopic differences indicate a dissimilar parental magma. Therefore, high Nd isotope samples imply a previously formed and highly primitive mantle whereas low Nd isotope samples may indicate comparable partial melting of an enriched heterogeneous shallow mantle. Other isotopic changes that do not conform to the chemical features of these lavas are partly related to the various tectonic events of the region, such as the Dead Sea Fault System and the Bitlis Suture Zone.  相似文献   
209.
Plutonic rocks from the Mineiro Belt, Brazil record a delayed onset of the transition from TTG to sanukitoid-type magmatism(high Ba-Sr), starting during the Siderian magmatic lull when little juvenile magma was added to the continental crust. Rocks mostly belong to the calc-alkaline series, meta-to peraluminous and originally "Ⅰ-type",meaning that oxidized magmas were formed by partial melting of subducted material. The temporal distribution and apparent secular changes of the magmas are consistent with the onset of subduction-driven plate tectonics due to an increase of the subduction angle and opening of the mantle wedge. New isotopic analyses(Sm-Nd whole rock and Lu-Hf in zircon)corroborate the restricted juvenile nature of the Mineiro Belt and confirm the genetic link between the Lagoa Dourada Suite,a rare ca. 2350 Ma high-Al tonalite-trondhjemite magmatic event, and the sanukitoid-type ca. 2130 Ma Alto Maranhao Suite. U-Pb dating of zircon and titanite constrain the crystallisation history of plutonic bodies; coupled with major and trace element analyses of the host rocks, they distinguish evolutionary trends in the Mineiro Belt. Several plutons in the region have ages close to 2130 Ma but are distinguished by the lower concentration of compatible elements in the juvenile high Ba-Sr suite.  相似文献   
210.
《Resource Geology》2018,68(3):303-325
The Lujing uranium deposit, located in the southeastern part of the Nanling metallogenic province, is one of the representative granite‐related hydrothermal uranium deposits in South China. Basic geology, geochemistry, and geochronology of the deposit have been extensively studied. However, there is still a chronic lack of systematic research on the genesis and metallogenic process of the deposit. Thus, we recently carried out an electron microprobe and stable isotopic analysis. The main research results and progresses are as follows: Uranium minerals in this deposit include coffinite, pitchblende, and uranothorite, and small amounts of uranium exist in accessory minerals in the form of isomorphism. Coffinite, which occurs predominantly as the pseudomorphs after pitchblende, also occurs as a primary mineral and is locally formed from the remobilization of uranium from adjacent uranium‐bearing minerals. The mineralizing fluid was originally composed of a magmatic fluid generated by late Yanshanian magmatism. The high As content of pyrite in ores may reflect the addition of meteoric water, or the formation water (or both), to the magmatic hydrothermal system. The δ34S values vary from −14.4‰ to 13.9‰ (mean δ34S = −3.9‰), showing a range that is similar to nearby Cambrian metamorphic strata and Indosinian granites, indicating that these host rocks represent the source of sulfur; however, the possibility of a mantle source cannot be completely ruled out. According to our new isotopic data and recent Pb isotopic data, we conclude that the uranium in ores was derived by leaching dominantly from the uranium‐rich host rocks, especially the Cambrian metamorphic strata. The δ13CPDB values (−8.75‰ to 1.40‰; mean δ13CPDB = −5.41‰) and δ18OSMOW values (5.45–18.62‰; mean δ18O = 13.02‰) of reddish calcite from the ore‐forming stage suggest that the CO2 in the mineralizing fluids was derived predominantly from the mantle, with a small component contributed by marine carbonates. Based on these new data and previous research results, this paper proposes that uranium metallogenesis in the Lujing deposit is closely associated with mafic magmatism resulting from crustal extension during the Cretaceous to Paleogene in South China.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号