首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   1篇
  国内免费   5篇
地球物理   7篇
地质学   10篇
海洋学   9篇
自然地理   2篇
  2023年   2篇
  2021年   1篇
  2019年   2篇
  2018年   3篇
  2015年   1篇
  2014年   3篇
  2013年   1篇
  2012年   1篇
  2009年   2篇
  2007年   1篇
  2006年   1篇
  2004年   2篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1994年   1篇
  1985年   1篇
排序方式: 共有28条查询结果,搜索用时 15 毫秒
11.
Indo-Pacific coral reefs are considered among the most complex and biodiversified ecosystems in the world. Their existence is threatened by both natural and anthropogenic factors. Therefore, the assessment of anthropogenic disturbances is necessary to protect and manage these marine natural resources. In Bunaken Marine Park (North Sulawesi, Indonesia) epibenthic assemblages and coral rubble features at four impacted sites (each of them located close to villages and frequently exploited as recreational diving spots), and four well preserved sites (far from villages and scarcely frequented by divers), were investigated at 6, 12 and 18 m depth, in order to identify possible reef modifications. The assemblages were sampled by way of photographs. Coral rubble cover was estimated both by way of photographs and along belt transects, while grain size and the living fraction of the coral rubble were assessed by direct samples. The data showed significant differences between the study sites and between depths with regard to human activity. The hard coral cover and the assemblage heterogeneity are higher in control sites than in the impacted site where, especially in shallow water, the mechanical damage can strongly affect the assemblage structure.  相似文献   
12.
We present petrologic, geochemical and U–Pb sensitive high resolution ion microprobe (SHRIMP) data from previously undocumented dacite intrusions from the SE Arm of Sulawesi. The dacites occur in a strand of a major fault (the Kolaka Fault) that crosses the SE Arm of Sulawesi and northern Bone Bay. U–Pb SHRIMP dating shows the “Kolaka Dacite” yields zircon grains and overgrowths that range between ca. 4 and 7 Ma, indicating active magmatism in SE Sulawesi at this time. The youngest age population (4.4 ± 0.2 Ma) from this range is interpreted to be the maximum crystallization age for the dacite. The Kolaka Dacite is undeformed, and so potentially intruded during or after movement within a strand of the Kolaka Fault. The dacites may have otherwise been emplaced passively along existing foliation planes in the country rock schist. Additional U–Pb data were collected from inherited zircons, yielding ages between 8 Ma and 1854 Ma. We consider that these inherited zircons are xenocrysts, derived from either (1) a partially melted protolith and/or (2) xenocrysts assimilated during ascent of the magma. In either case, the inherited zircons record the age of the basement rocks beneath this part of SE Sulawesi. These inherited zircon cores show that the SE arm of Sulawesi is underlain by Proterozoic or younger material, validating earlier ideas that the crust here was derived from Gondwana.  相似文献   
13.
TAN Hao-yuan  WANG Zhi 《地震地质》2019,41(6):1366-1379
3-D VP and VS images of southern Philippines at the 0~100km depths are generated by inverting a large number of travel-time data from the International Seismological Centre(1960-2017)through seismic tomography method. The results show lateral variation exists in the crust and upper mantle:High VP and VS anomalies emerge in mid-west Mindanao and Bohol Island, which might be caused by the combined action of huge magmatism and ophiolite accretion in the lower crust; low velocity anomalies of the upper mantle in the west of Mindanao are consistent with locations of volcanoes on the surface. It, thus, could be inferred that the low velocity anomaly is closely related to magmatic activity. The dense earthquake distribution along plate margin extending to 100km coincides with the strong activity of the Philippine Sea Plate which is located in the northeast and southeast of Mindanao. Relative weak activity of Sulawesi Sea Basin is presented simultaneously. The subduction of the Philippine Sea Plate is mostly concentrated in the crust and the top of the uppermost mantle. Our tomographic images show that lateral heterogeneities exist in the crust and uppermost mantle of the southern Philippines. Low VP and VS anomalies emerge in Philippine Trench and Cotabato Trench, in contrast, high VP and VS anomalies appear in shallow crust of land area where a large number of earthquakes and magmatic activities develop. This may reflect strong tectonic processes between the Philippine Sea Plate and Philippine Mobile Belt. Low VP and VS anomalies in the crust of eastern Mindanao coinciding with the location of volcanoes on the surface may show partial melting of crust material caused by dehydration of the subducting Philippine Sea Plate. Such a similar phenomenon can be also seen in the south of Negros Island and Cotabato Trench. Thus we infer that active tectonic behaviors are constrained within the crust of the Philippine Sea Plate, Sulu Sea Basin and Sulawesi Basin.Low VP and VS anomalies of the mantle in the mid-west of Mindanao island are associated with magmatic activity which may be caused by a collision between the east and west part of Mindanao at 5Ma. The fracture system in the west of Mindanao provides the possible passage ways of mantle hot material upwelling, coinciding with the model of geothermal distribution in this area. According to the geochemical analysis, ophiolite observed in Sanbaoyan and the western part of Mindanao could indicate material composition from crust to upper mantle on Eurasian continental margin which may show the evidence of rapid expansion environment of mid-ocean ridge. High VP and VS anomalies in the mantle of northeast and southeast of Mindanao coinciding with the distribution of massive earthquake along boundaries show a well agreement with the shape of the Philippine Sea Plate. Dense earthquake distribution in south Mindanao at 100km shows the Philippine Sea Plate has strong activity and stress accumulation in the upper mantle. On the contrary, the seismicity in southwest Mindanao and Cotabato Trench reduces rapidly at the depth from 50km to 100km, revealing weak subduciton and stress release of Sulawesi Basin in the mantle.  相似文献   
14.
The East Sulawesi Ophiolite (ESO) is tectonically dismembered and widely distributed in Central and East Sulawesi. It comprises, from base to top, residual mantle peridotite and mafic–ultramafic cumulate through layered to isotropic gabbro, to sheeted dolerites and basaltic volcanic rocks. Residual peridotite is dominantly spinel lherzolite intercalated with harzburgite and dunite. Ultramafic rocks from different locations display significant differences in rock composition and mineral. However, the clinopyroxene of peridotite displays REE pattern similarities with those of mid-ocean ridge (MOR) origin, rather than those of suprasubduction zone (SSZ) origin. The gabbroic unit consists of massive gabbro, layered gabbro, mafic and ultramafic cumulate and anorthosite. The observed crystallization sequence of gabbroic unit, which is olivine→(spinel)→plagioclase→clinopyroxene→(orthopyroxene)→(hornblende), and the mineral chemistry data indicate that the ESO gabbro has similarities with MOR setting.Major and trace element geochemistry of basalt and dolerite suggests MOR, oceanic plateau and minor SSZ origins. A possible oceanic plateau origin is supported by the following: (i) the 15-km thickness is comparable with the thickness of oceanic plateau rather than normal oceanic lithosphere; (ii) there are no or only minor olivine phenocrysts in the basalt; and (iii) predominance of aphyric texture in the basalts. The REE pattern of ESO basalt exhibits N-MORB-like signatures. However, a negative Nb anomaly in the trace element spider diagram may be attributed to mantle heterogeneity of an OPB source.The geochemical variations and disparities for both peridotite and basalt and the noncogenetic relationship between crust and mantle sections in several locations suggest that the ESO may have been formed at one tectonic setting and was later overprinted by magmatism in different environments through its birth to emplacement. A possible Cretaceous origin of an oceanic plateau component of the ESO is indicated on the basis of calculated paleopositions using plate trajectory analyses together with previously published paleolatitude data. The ESO can be traced back to the proximity of the presently active region of the SW Pacific Superplume.  相似文献   
15.
We present the first data on bulk‐rock major and trace element compositions for a suite of eclogite‐ and blueschist‐facies rocks from the Bantimala Complex, Indonesia, with the aim of better constraining the protolith origins and nature of the subducted crust. The eclogites can be classified into two groups: glaucophane‐rich eclogite and glaucophane‐free eclogite, whereas the blueschists are divided into albite–epidote glaucophanite and quartz–glaucophane schists. SiO2 contents of the eclogites are 43.3–49.6 wt%, with Na2O + K2O contents 3.7–4.7 wt%. The blueschists show a wider range of compositions, with SiO2 = 40.7–63.8 wt% and Na2O + K2O = 2.7–4.5 wt%. Trace element data suggest that the eclogite protoliths include both enriched and normal mid‐oceanic ridge basalt (E‐MORB and N‐MORB) and also gabbroic cumulates. The blueschists show more variation in protoliths, which include N‐MORB, Oceanic Island Basalt (OIB) and Island Arc Basalt (IAB). Plots of element concentrations against the immobile Zr show considerable mobility of large ion lithophiles but not of high field‐strength elements during high‐pressure metamorphism, and indicate that the high SiO2 content of some blueschists is probably due to metasomatism by a LILE‐rich siliceous aqueous fluid. Strong correlations between K, Rb, Ba and Cs suggests that enrichment of these elements occurred by a single process. All the protoliths were subducted, metamorphosed to blueschist/eclogite‐facies and subsequently exhumed. It is noteworthy that the samples deduced to have come from thicker‐crust environments (OIB, IAB) were subducted to shallower depths (blueschist‐facies) than MORB‐derived samples, all except one of which reached eclogite‐facies conditions. The geochemical data of this study demonstrate the variety of ocean floor types that were subducted under the southeast margin of Sundaland in the late Jurassic period.  相似文献   
16.
苏拉威西岛北部属于马鲁古海板块,其主体是北苏拉威西海沟俯冲带与帕卢-科洛左旋走滑断裂所围限的岛北支和岛东支。大约5 Ma前,苏拉群岛沿Sorong断层与苏拉威西岛东支碰撞,导致北苏拉威西海沟俯冲后撤,引起了岛北支顺时针旋转约20°~25°,同时,西侧的帕卢-科洛断层发生了约4 cm/a的左旋走滑。本文利用综合地球物理方法,计算了该区三维温度、速度、黏性特征,认为:苏拉威西岛北部在左旋走滑、俯冲后撤过程中,地壳以脆性变形为主,但由于北苏拉威西海沟俯冲带在地壳内形成南向倾斜的软弱层,Moho面和地形“镜像”区域内形成脆、韧变形共存的组合。地幔变形为韧性变形,深度约100 km的上地幔低速流变层是地幔韧性变形的主控层位。在周边板块边界不断移动的动力学背景中,苏拉威西岛北部在地壳尺度以收缩-伸展变形为主,在岩石圈尺度以旋转变形为主。  相似文献   
17.
Abstract The Bantimala Complex of South Sulawesi consists mainly of mélange, chert, basalt, ultramafic rocks and high pressure type metamorphic rocks. Well-preserved radiolarians were extracted from 10 samples of chert, and K-Ar age dating was done for muscovite from five samples of schist of the Bantimala Complex. The radiolarian assemblage from chert is assigned middle Cretaceous (late Albian-early Cenomanian) age, while the K-Ar age data from schist range from 132 Ma to 114 Ma except for one sample with rare muscovite. The radiolarian chert is unconformably underlain by schist in the Bantimala Complex. The stratigraphie relationship and the time lag of these two kinds of age data from chert and underlying schist suggest short-time tectonic events immediately followed by a quick waning tectonism in this region during the Albian-Cenomanian transgression.  相似文献   
18.
In order to preserve diversity it is essential to understand how assemblages change across space. Despite this fact, we still know very little about how marine diversity is spatially distributed, especially among lesser‐studied invertebrate taxa. In the present study beta‐diversity patterns of sea urchins, sponges, mushroom corals and larger foraminifera were assessed in the Spermonde Archipelago (Indonesia). Using ordinations we showed that the inshore zone (<5 km offshore), midshore zone (5 < x < 30 km offshore) and distance offshore zone (>30 km offshore) all contained distinct assemblages of sponges and corals, while only foraminifera assemblages from the inshore (<5 km offshore) zone were distinct. There was a significant spatial pattern of community similarity for all taxa surveyed, but this pattern proved to be wholly related to environmental variables for sponges and foraminifera, and primarily for mushroom corals and sea urchins. The lack of a pure spatial component suggests that these taxa may not be dispersal limited within the spatial scales of this study (c. 1600 km2). The analyses of the corals and foraminifera were additionally tested at two spatial scales of sampling. Both taxa were primarily associated with local‐scale environmental variables at the local scale and larger‐scale variables at the larger scale. Mean inter‐plot similarity was also higher and variation lower at the larger scale. The results suggest that substantial variation in similarity can be predicted using simple locally assessed environmental variables combined with remotely sensed parameters.  相似文献   
19.
Serpentinized ultramafic rocks occur in two separate basement complexes in the South Arm of Sulawesi, the Bantimala and Barru Blocks. We present petrographic, mineral chemical and geochemical data for these rocks, and interpret them in terms of petrogenesis and tectonic setting. The rocks of both blocks show strong serpentinization of original anhydrous silicates. The Bantimala ultramafics consist mainly of peridotite (harzburgite and dunite) and clinopyroxenite, with lenses of podiform chromitite. Metamorphism is evidenced by the occurrence of amphibolite-facies tremolite schist. In contrast, the Barru ultramafics consist of harzburgite peridotite and podiform chromitite, which also show an amphibolite-facies overprint that in this case may be related to intrusion by a large dacite/granodiorite body. Whole-rock trace element analyses and spinel compositions show that the Barru harzburgite is depleted relative to primitive mantle, and has had some melt extracted. In contrast, the Bantimala dunite, harzburgite and clinopyroxenite are cumulates. Both are derived from a supra-subduction zone environment, and were obducted during the closure of small back-arc basins. If there has been no rotation of the blocks, then the Bantimala ultramafics were emplaced from an ENE direction, while the Barru ultramafics were emplaced from the WNW. The ultramafic suites from these two blocks are juxtaposed with metamorphic assemblages, which were later intruded by younger volcanics, particularly in the Barru Block.  相似文献   
20.
The Neogene Western Sulawesi Arc, from the south going northwards, can be divided into three magmatic provinces of K alkaline–shoshonitic (AK-SH), high-K calc-alkaline (KCA), and low-K–normal calc-alkaline (TH-CA) affinity, referred to, respectively, as South, Central and North Sulawesi. The origin of this magmatism in terms of subduction and collision processes is contentious. Four widely spaced Cu–Au porphyry, and one Mo porphyry district(s) occur along the Western Sulawesi Arc, with the North Sulawesi province being the most mineralized. This porphyry mineralization is part of a regional belt that extends north into the Philippines and possibly south to the Sunda Arc. In western Sulawesi, common features that define the porphyry belt are obscure because the porphyry districts cannot be simply related, either in terms of their magmatic affinity, nature of basement, or tectonic setting. Nevertheless, it can be suggested that the generation of porphyry Mo systems requires involvement of continental crust in terms of magma source, while Au-rich porphyry systems are independent of the nature of the crust, and are derived from a mantle source.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号