首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   541篇
  免费   59篇
  国内免费   179篇
地球物理   57篇
地质学   652篇
海洋学   34篇
天文学   5篇
综合类   10篇
自然地理   21篇
  2024年   3篇
  2023年   3篇
  2022年   8篇
  2021年   7篇
  2020年   26篇
  2019年   16篇
  2018年   20篇
  2017年   22篇
  2016年   19篇
  2015年   14篇
  2014年   34篇
  2013年   31篇
  2012年   41篇
  2011年   23篇
  2010年   18篇
  2009年   30篇
  2008年   38篇
  2007年   44篇
  2006年   35篇
  2005年   38篇
  2004年   39篇
  2003年   35篇
  2002年   23篇
  2001年   43篇
  2000年   40篇
  1999年   32篇
  1998年   17篇
  1997年   18篇
  1996年   17篇
  1995年   11篇
  1994年   8篇
  1993年   6篇
  1992年   5篇
  1991年   4篇
  1990年   5篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有779条查询结果,搜索用时 296 毫秒
21.
22.
New palaeotemperature reconstructions have been obtained on the basis of oxygen isotopic analysis of 178 aragonitic shell samples taken from specimens of three ammonoid orders (and some corresponding families): Phylloceratida (Phylloceratidae), Lytoceratida (Tetragonitidae) and Ammonitida (Oppeliidae, Desmoceratidae, Silesitidae, Cleoniceratidae and Douvilleiceratidae). Those obtained from aragonite shells, secreted in the lower epipelagic and in the middle mesopelagic zones during coolest season (winter), range from 15.4 to 16.8 °C, and from 11.8 to 12.0 °C, respectively. Presumed spring/autumn palaeotemperatures obtained from aragonite shells, secreted apparently in the upper and lower epipelagic, upper and middle mesopelagic zones, are somewhat higher. Presumed summer palaeotemperatures, calculated apparently for the upper and lower epipelagic, and upper mesopelagic zones range from 19.4 to 21.7 °C, from 17.7 to 19.4 °C, and from 14.4 to 16.1 °C, respectively. The predominant part of investigated ammonoids from Madagascar inhabited the epipelagic zone, but some phylloceratid, tetragonitid and silesitid ammonoids preferred deeper, cooler conditions (upper-middle mesopelagic zone). The study supports the hypothesis that Madagascar was located in middle latitudes within the tropical-subtropical climatic zone during the early Albian. Available carbon and strontium isotope data allow us to assume a more or less expressed carbon and strontium isotope stratification of the water column in this region in the early Albian. On the basis of the stable isotope data, following partly Lukeneder (2015), two large ethological groups can be recognised mainly in mid-aged and adult ammonoids. Some ammonoids (group 1) preferred apparently mesopelagic conditions, and to a lesser degree the epipelagic zone, being mainly cool-requiring animals. However, a significant part of the isotopically investigated ammonoids (group 2) preferred, on the contrary, only epipelagic conditions, being mainly thermophilic dwellers.  相似文献   
23.
Kajan subvolcanic rocks in the Urumieh–Dokhtar magmatic arc (UDMA), Central Iran, form a Late Miocene-Pliocene shallow-level intrusion. These subvolcanics correspond to a variety of intermediate and felsic rocks, comprising quartz diorite, quartz monzodiorite, tonalite and granite. These lithologies are medium-K calc-alkaline, with SiO2 (wt.%) varying from 52% (wt.%) to 75 (wt.%). The major element chemical data also show that MgO, CaO, TiO2, P2O5, MnO, Al2O3 and Fe2O3 define linear trends with negative slopes against SiO2, whilst Na2O and K2O are positively correlated with silica. Contents of incompatible trace elements (e.g. Ba, Rb, Nb, La and Zr) become higher with increasing SiO2, whereas Sr shows an opposite behaviour. Chondrite-normalized multi-element patterns show enrichment in LILE relative to HFSE and troughs in Nb, P and Ti. These observations are typical of subduction related magmas that formed in an active continental margin. The Kajan rocks show a strong affinity with calc-alkaline arc magmas, confirmed by REE fractionation (LaN/YbN = 4.5–6.4) with moderate HREE fractionation (SmN/YbN = 1.08–1.57). The negative Eu anomaly (Eu/Eu* <1), the low to moderate Sr content (< 400 ppm) and the Dy/Yb values reflect plagioclase and hornblende (+- clinopyroxene) fractionation from a calc-alkaline melt Whole–rock Sr and Nd isotope analyses show that the 87Sr/86Sr initial ratios vary from 0.704432 to 0.705989, and the 143Nd/144Nd initial ratios go from 0.512722 to 0.512813. All the studied samples have similar Sr-Nd isotopes, indicating an origin from a similar source, with granite samples that has more radiogenic Sr and low radiogenic Nd isotopes, suggesting a minor interaction with upper crust during magma ascent. The Kajan subvolcanic rocks plot within the depleted mantle quadrant of the conventional Sr-Nd isotope diagram, a compositional region corresponding to mantle-derived igneous rocks.  相似文献   
24.
Multi-isotope (H, O, S, Sr, Pb) systems coupled with conventional (major and trace element) hydrogeochemical analysis were applied to determine the origin of water, to model water-rock-tailings interactions and for source apportionment of sulfur and associated toxic metals in the mining region of Taxco, Guerrero in southern Mexico. Oxygen and H isotopes indicate that meteoric water in the zone is rainwater undergoing varying degrees of isotopic fractionation by atmospheric evaporation whereas Sr isotopes trace the interaction of pristine water from volcanics of the regional recharge zone and subsequently flowing through sandstone and shale to spring points. Leachates form from two distinctive sources (spring water and surface water) having differential interactions with bedrocks prior to entering the tailings. Compared to pristine water, leachates are enriched in sulfate, metals (e.g. Fe, Mn, Pb and Zn) and metalloids (e.g. As). The sulfur isotopic composition of ore-sulfides, leachates, secondary precipitates, regional surface water and hypogenic sulfates is described in terms of a two-component mixing model with shale of Mexcala and limestone of Morelos formations representing the light and heavy end-members, respectively, whereas Sr isotopic composition is bracketed combining three lithogenic (Mexcala/Morelos, Tilzapotla and Taxco Schist) sources. Finally, leachates have a mixture of lead from ore-sulfides and Taxco Schist Formation (Family I) or from ore-sulfides alone (Family II). The application of multiple environmental isotopic techniques is an outstanding tool for elucidating complex interactions of water with bedrocks and tailings and for determining the source of sulfur and toxic metal from mining and other metal polluted environments.  相似文献   
25.
The Early Cretaceous (∼135–131 Ma) Paraná-Etendeka continental flood basalts, preserved in bulk in the Paraná basin of southern Brazil and vicinity, have been divided into low-Ti and high-Ti types that govern the southern and northern halves of the basin, respectively. We have examined a new sample set from the southern margin of the northern high-Ti segment of Paraná basalts in Misiones, northeastern Argentina. These basalts are strongly to moderately enriched in TiO2 (2–4 wt.%), have relatively high Ti/Y (300–500), low MgO (3.5–6.5 wt.%), and high Fe (FeO(tot) 12–14 wt.%) and belong to the Pitanga and Paranapanema magma types of Peate et al. (1992). Nd and Sr isotope compositions are quite unvarying with εNd (at 133 Ma) values of −4.6 to −3.6 and initial 87Sr/86Sr of 0.7054–0.7059 and show no variation with fractionation. Compared to high-Ti lavas in the central and northern parts of the Paraná high-Ti basalt segment, the lavas from Misiones are similar to those in the northeastern magin of the basin but less radiogenic in initial Nd isotope composition than those in the central part. This variation probably reflects mixed EM1-EM2 source components in the sublithospheric mantle. A polybaric melt model of a sublithospheric mantle source at the garnet lherzolite-spinel lherzolite transition is compatible with the observed Ti budget of the Pitanga and Paranapanema lavas, regardless of the Nd isotope composition of their purported source.  相似文献   
26.
The Lamont‐Doherty Earth Observatory radiogenic isotope group has been systematically measuring Sr‐Nd‐Pb‐Hf isotopes of USGS reference material BCR‐2 (Columbia River Basalt 2), as a chemical processing and instrumental quality control monitor for isotopic measurements. BCR‐2 is now a widely used geochemical inter‐laboratory reference material (RM), with its predecessor BCR‐1 no longer available. Recognising that precise and accurate data on RMs is important for ensuring analytical quality and for comparing data between different laboratories, we present a compilation of multiple digestions and analyses made on BCR‐2 during the first author's dissertation research. The best estimates of Sr, Nd and Hf isotope ratios and measurement reproducibilities, after filtering at the 2s level for outliers, were 87Sr/86Sr = 0.705000 ± 11 (2s, 16 ppm, n = 21, sixteen digestions, one outlier), 143Nd/144Nd = 0.512637 ± 13 (2s, 25 ppm, n = 27, thirteen digestions, one outlier) and 176Hf/177Hf = 0.282866 ± 11 (2s, 39 ppm, n = 25, thirteen digestions, no outliers). Mean Nd and Hf values were within error of those reported by Weis et al. (2006, 2007) in their studies of RMs; mean Sr values were just outside the 2s uncertainty range of both laboratories. Moreover, a survey of published Sr‐Nd‐Hf data shows that our results fall within the range of reported values, but with a smaller variability. Our Pb isotope results on acid leached BCR‐2 aliquots (n = 26, twelve digestions, two outliers) were 206Pb/204Pb = 18.8029 ± 10 (2s, 55 ppm), 207Pb/204Pb = 15.6239 ± 8 (2s, 52 ppm), 208Pb/204Pb = 38.8287 ± 25 (2s, 63 ppm). We confirm that unleached BCR‐2 powder is contaminated with Pb, and that sufficient leaching prior to digestion is required to achieve accurate values for the uncontaminated Pb isotopic compositions.  相似文献   
27.
《Resource Geology》2018,68(4):446-454
The Jinchang Cu–Au deposit in Heilongjiang Province, NE China, is located in the easternmost part of the Central Asian Orogenic Belt. Rb–Sr analyses of auriferous pyrite from the deposit yielded an isochron age of 113.7 ±2.5 Ma, consistent with previously reported Re–Os ages. Both sets of ages represent the timing of Cu–Au mineralization because (i) the pyrite was separated from quartz–sulfide veins of the mineralization stage in granite porphyry; (ii) fluid inclusions have relatively high Rb, Sr, and Os content, allowing precise measurement; (iii) there are no other mineral inclusions or secondary fluids in pyrite to disturb the Rb–Sr or Re–Os decay systems; and (iv) the closure temperatures of the two decay systems are ≥500°C (compared with the homogenization temperatures of fluid inclusions of 230–510°C). It is proposed that ore‐forming components were derived from mantle–crust mixing, with ore‐forming fluids being mainly exsolved from magmas with minor amounts of meteoric water. The age of mineralization at Jinchang and in the adjacent regions, combined with the tectonic evolution of the northeast China epicontinental region, indicates that the formation of the Jinchang porphyry Cu–Au deposit was associated with Early Cretaceous subduction of the paleo‐Pacific Plate.  相似文献   
28.
The geologic positions and geochemical and isotope parameters of the Ordovician-early Silurian and Early-Middle Devonian continuous volcanic series of the Minusa basin and its mountainous framing are compared. Both series are composed mostly of moderately alkaline rocks with variations in SiO2 contents from 45 to 77 wt.%. The Ordovician-early Silurian series differs from the Early-Middle Devonian one in lower contents of TiO2 (< 1.7 wt.%) and Fe2O3tot and higher contents of Al2O3 in all rock varieties and in the more fractionated REE patterns of trachybasalts. The compositions of both series reflect two simultaneous mechanisms of magma evolution. The main process was fractional crystallization leading to the formation of rocks from trachybasalts to trachyrhyodacites. The accessory mechanism was the contamination of fractionated melts by crustal material, anatectic melting of crust, and mixing of deep-seated magmas with crustal melts. These processes had specifics at each stage and were controlled by the composition of the sources of parental melts. Their geochemical and isotopic parameters (high alkalinity, high contents of lithophile elements, negative anomalies of Nb, Ta, and Ti, and enrichment in radiogenic Sr) point to the interaction of mantle plumes with the lithospheric mantle that was metasomatically transformed during the preceding Vendian-early Cambrian subduction processes.  相似文献   
29.
陈振宇  曾令森  梁凤华  张泽明 《地质学报》2006,80(12):1842-1850
为探讨榴辉岩中磷灰石的矿物化学特征及榴辉岩中某些相关元素的地球化学行为,对中国大陆科学钻探(CCSD)主孔500~540m深度的榴辉岩样品进行了岩石化学及磷灰石的矿物化学分析。这些榴辉岩具有不同的矿物组成和化学成分,并可据此分为上下两段,上段500~530m为正常榴辉岩,下段530~540m为高Ti榴辉岩和高Ti-Fe榴辉岩,其原岩可能为类似于辉长质和苦橄质的基性—超基性岩石。其中的磷灰石成分没有明显差别,均为氟—磷灰石,其富F贫Cl的特征可能是造成榴辉岩中高盐度流体包裹体和全岩高F低Cl的主要原因。磷灰石普遍含有一定的Sr、S、Fe元素,多数还含有Cu、Pb、Zn等元素。榴辉岩中P2O5含量与其F、Cl、Sr、S元素的相关程度表明,磷灰石是榴辉岩中F元素的最主要储存库,也是Sr元素的重要储存库之一,而对于Cl元素则只是部分控制,与S元素则没有相关性。榴辉岩中F、Sr及Cl元素的地球化学行为主要受控于磷灰石,因此,在榴辉岩从进变质—退变质过程中,这些元素的活动性直接受控于磷灰石的稳定性。  相似文献   
30.
结合野外露头层序地层研究,探讨了羌塘盆地龙尾错地区中上侏罗统地层层序地层划分及其C、O、Sr同位素响应.认为自中侏罗统布曲组(J2b)-上侏罗统雪山组一段(J3xs1)可划分出三个三级层序.其中布曲组-索瓦组二段下部,C、O、Sr同位素在同一层序内呈有规律变化:在TST体系域内δ13C、δ18O、87Sr/86Sr均值较高,在纵向变化曲线上表现为正偏,而在HST体系域内表现为相对的负偏.其纵向上的三次明显正偏与负偏可分别对应于三次海底的停滞与扩张.文章同时分析了个别异常样品的数据特征及其成因.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号