全文获取类型
收费全文 | 276篇 |
免费 | 27篇 |
国内免费 | 35篇 |
专业分类
测绘学 | 1篇 |
大气科学 | 2篇 |
地球物理 | 28篇 |
地质学 | 240篇 |
海洋学 | 15篇 |
天文学 | 8篇 |
综合类 | 8篇 |
自然地理 | 36篇 |
出版年
2023年 | 3篇 |
2022年 | 7篇 |
2021年 | 11篇 |
2020年 | 5篇 |
2019年 | 12篇 |
2018年 | 7篇 |
2017年 | 10篇 |
2016年 | 6篇 |
2015年 | 9篇 |
2014年 | 6篇 |
2013年 | 27篇 |
2012年 | 9篇 |
2011年 | 11篇 |
2010年 | 17篇 |
2009年 | 15篇 |
2008年 | 16篇 |
2007年 | 15篇 |
2006年 | 16篇 |
2005年 | 16篇 |
2004年 | 10篇 |
2003年 | 8篇 |
2002年 | 12篇 |
2001年 | 23篇 |
2000年 | 6篇 |
1999年 | 4篇 |
1998年 | 8篇 |
1997年 | 12篇 |
1996年 | 7篇 |
1995年 | 7篇 |
1994年 | 4篇 |
1993年 | 3篇 |
1992年 | 4篇 |
1991年 | 4篇 |
1990年 | 3篇 |
1989年 | 1篇 |
1988年 | 2篇 |
1985年 | 1篇 |
1984年 | 1篇 |
排序方式: 共有338条查询结果,搜索用时 15 毫秒
81.
82.
Stratigraphic and sedimentological investigation of the interglacial succession within the Cryogenian-aged Umberatana Group of the Northern and Central Flinders Ranges reveals a complex array of sedimentary successions lying between the Sturtian and Marinoan glacial deposits. The Sturtian–Marinoan Series boundary was first defined from the Adelaide area at the uppermost contact of the Brighton Limestone. In the Northern Flinders Ranges the Sturtian–Marinoan Series boundary has been positioned at the uppermost contact of the Balcanoona Formation, which is thought to correlate with the Brighton Limestone. In the Northern Flinders Ranges a major unconformity separates the Sturtian and Marinoan-aged sedimentary successions (Nepouie–Upalinna Subgroups). In moderately deep marine depositional settings, this submarine unconformity is located at the base of the Yankaninna Formation where erosion has deeply incised (up to 300 m) into the underlying Tapley Hill Formation. In shallower marine settings the unconformity is found at the base of the Weetootla Dolomite. In very deep water depositional settings this unconformity is not recognised, and the Yankaninna Formation appears to conformably overlie the Tapley Hill Formation suggesting that this erosional feature is restricted to shallow and moderately deep depositional settings. This unconformity presents a regionally persistent chronostratigraphic marker horizon, which reliably marks the Sturtian–Marinoan Series boundary at the base of the Yankaninna Formation from shallow shelfal to deep-water basinal settings throughout the Northern Flinders Ranges. In the Central Flinders Ranges the post-Sturtian glacial stratigraphy records a very similar depositional record to that observed in the Northern Flinders Ranges. In the Central regions the Tapley Hill Formation is overlain by deep-marine carbonates and calcareous shales of the Wockerawirra Dolomite and Sunderland Formations, respectively. The base of the Wockerawirra Dolomite is found to be in erosional contact with the underlying Tapley Hill Formation. This stratigraphic relationship, together with lithological similarities, indicates the Wockerawirra Dolomite and Sunderland Formation of the Central Flinders Ranges are lateral correlatives of the Yankaninna Formation of the Northern Flinders Ranges. The regional nature of the Sturtian–Marinoan unconformity in the Adelaide Geosyncline suggest the possible existence of a glacio-eustatic event that may correlate with glacials/glaciation elsewhere on the Earth during the Cryogenian. 相似文献
83.
Glacial influence on Neoproterozoic sedimentation: the Smalfjord Formation, northern Norway 总被引:1,自引:0,他引:1
ABSTRACT There is much debate regarding the intensity and geographic extent of glaciation during the Neoproterozoic, particularly in response to recent geochemical work suggesting that the Neoproterozoic earth was at times ice covered from equator to poles (the ‘Snowball Earth’ hypothesis). A detailed sedimentological analysis of the Neoproterozoic Smalfjord Formation of northern Norway was conducted in order to determine the extent and intensity of glacial influence on sedimentation. In the Tarmfjorden area, the Smalfjord Formation consists of a stacked succession of diamictites interbedded with fine‐grained laminated mudstones containing rare outsized clasts. Diamictites and interbedded mudstones are interpreted as the product of subaqueous mass flows generated along the basin margin. In the Varangerfjorden area, chaotically interbedded diamictites, conglomerates and sandstones are overlain by a thick succession of stacked sandstone beds; onediamictite unit at Bigganjargga overlies a striated pavement. The Varangerfjorden outcrops appear to record deposition on a subaqueous debris apron. Although diamictites contain rare striated and faceted clasts, suggesting a glacial sediment source, their origin as subaqueous mass flows prevents the interpretation of ice mass form or distribution. Rare lonestones may be associated with floating ice in the basin, which may be of glacial or seasonal origin. Glacial ice may have contributed poorly sorted glacial debris to the basin margin, either directly or through fluvioglacial systems, but there is no evidence of direct deposition by ice at Varangerfjorden or Tarmfjorden. The overall fining‐upward trend identified in the Smalfjord Formation and overlying Nyborg Formation is consistent with depositional models of rift basin settings. This fining‐upward trend, the predominance of mass flow facies including breccias associated with scarps and the evidence for extensional tectonic activity in the region suggest that tectonic activity may have played an important role in the development of this Neoproterozoic succession. The Smalfjord Formation at Tarmfjorden and Varangerfjorden does not exhibit sedimentological characteristics consistent with severe glacial conditions suggested by the snowball Earth hypothesis. 相似文献
84.
85.
唐古拉山地区第四纪冰川作用与冰川特征 总被引:2,自引:2,他引:2
自中更新世以来,唐古拉山地区发生过3次更新世冰川作用(即昆仑冰期、倒数第二次冰期和末次错冰期)和2次全新世晚期冰进(即新冰期和小冰期冰进).昆仑冰期(最大冰期)发生在中更新世早期(0.80~0.60MaBP),不仅是本区最早的一次冰期,而且也是冰川规模最大的一次冰期,当时的冰川规模比现代冰川大16~18倍;倒数第二次冰期发生在中更新世晚期(0.30~0.135MaBP),比现代冰川大13~15倍;末次冰期发生在晚更新世晚期,应分为末次冰期早冰阶(75.0~58.0kaBP)和晚冰阶(32.0~15.0kaBP,23.0kaBP时达到极盛),但在唐古拉山地区截止目前还未找到早冰阶的冰川遗迹,因此,只对末次冰期的晚冰阶(LMG)进行了探讨.LMG时,冰川规模比现代冰川大10倍;新冰期发生在全新世高温期后,冰碛物的14C测年为(3540±160)aBP,冰川规模略大于现代冰川;小冰期发生在15~1世纪,冰川规模已接近于现代冰川.由于青藏高原的上升,对高原腹部地区引起的干旱化过程和水分严重不足,使唐古拉山地区的冰川自昆仑冰期以来,冰川规模一次比一次明显的减小. 相似文献
86.
Carlo Giraudi 《第四纪科学杂志》2012,27(4):432-440
Study of the glacial deposits and lacustrine sediments of Campo Felice (Apennines, central Italy) has enabled the glacial phases of the last 40 ka to be dated more precisely, and has demonstrated that the maximum glacial advance did not occur in correspondence with the last global glacial maximum and with the coldest and most arid phase suggested by the pollen, but in a period dated between about 33 and 27 ka, characterized by a less extreme climate. Furthermore, a glacial expansion took place also in the period prior to 35 ka. Correlation with the Alpine glacial variations has shown that the Apennine last glacial maximum occurred before that of the southern slope of the Alps. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
87.
Twenty-two new radiocarbon ages from Skagit valley provide a detailed chronology of alpine glaciation during the Evans Creek stade of the Fraser Glaciation (early marine oxygen isotope stage (MIS) 2) in the Cascade Range, Washington State. Sediments at sites near Concrete, Washington, record two advances of the Baker valley glacier between ca. 30.3 and 19.5 cal ka BP, with an intervening period of glacier recession about 24.9 cal ka BP. The Baker valley glacier dammed lower Skagit valley, creating glacial Lake Concrete, which discharged around the ice dam along Finney Creek, or south into the Sauk valley. Sediments along the shores of Ross Lake in upper Skagit valley accumulated in glacial Lake Skymo after ca. 28.7 cal ka BP behind a glacier flowing out of Big Beaver valley. Horizontally laminated silt and bedded sand and gravel up to 20 m thick record as much as 8000 yr of deposition in these glacially dammed lakes. The data indicate that alpine glaciers in Skagit valley were far less extensive than previously thought. Alpine glaciers remained in advanced positions for much of the Evans Creek stade, which may have ended as early as 20.8 cal ka BP. 相似文献
88.
Seismicity is known to contribute to landscape denudation through its role in earthquake‐triggered slope failure; but little is known about how the intensity of seismic ground motions, and therefore triggering of slope failures, may change through time. Topography influences the intensity of seismic shaking – generally steep slopes amplify shaking more than flatter slopes – and because glacial erosion typically steepens and enlarges slopes, glaciation may increase the intensity of seismic shaking of some landforms. However, the effect of this may be limited until after glaciers retreat because valley ice or ice‐caps may damp seismic ground motions. Two‐dimensional numerical models (FLAC 6.0) were used to explore how edifice shape, rock stiffness and various levels of ice inundation affect edifice shaking intensity. The modelling confirmed that earthquake shaking is enhanced with steeper topography and at ridge crests but it showed for the first time that total inundation by ice may reduce shaking intensity at hill crests to about 20–50% of that experienced when no ice is present. The effect is diminished to about 80–95% if glacier ice level reduces to half of the mountain slope height. In general, ice cover reduced shaking most for the steepest‐sided edifices, for wave frequencies higher than 3 Hz, and when ice was thickest and the rock had shear stiffness well in excess of the stiffness of ice. If rock stiffness is low and shear‐wave velocity is similar to that of ice, the presence of ice may amplify the shaking of rock protruding above the ice surface. The modelling supports the idea that topographic amplification of earthquake shaking increases as a result of glacial erosion and deglaciation. It is possible that the effect of this is sufficient to have influenced the distribution of post‐glacial slope failures in glaciated seismically active areas. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
89.
Since 1973 new data were obtained on the maximum extent of glaciation in High Asia. Evidence for an ice sheet covering Tibet during the Last Glacial Period means a radical rethinking about glaciation in the Northern Hemisphere. The ice sheet's subtropical latitude, vast size (2.4 million km2) and high elevation (6000 m asl) are supposed to have resulted in a substantial, albedo-induced cooling of the Earth's atmosphere and the disruption of summer monsoon circulation. Moraines were found to reach down to 460 m asl on the southern flank of the Himalayas and to 2300 m asl on the northern slope of the Tibetan Plateau, in the Qilian Shan region. On the northern slopes of the Karakoram, Aghil and Kuen-Lun mountains, moraines occur as far down as 1900 m asl. In southern Tibet radiographic analyses of erratics suggest a former ice thickness of at least 1200 m. Glacial polish and roches moutonnées in the Himalayas and Karakoram suggest former glaciers as thick as 1200–2700 m. On the basis of this evidence, a 1100–1600 m lower equilibrium line (ELA) has been reconstructed, resulting in an ice sheet of 2.4 million km2, covering almost all of Tibet. Radiometric ages, obtained by different methods, classify this glaciation as isotope stage 3–2 in age (Würmian = last glacial period). With the help of 13 climate measuring stations, radiation- and radiation balance measurements have been carried out between 3800 and 6650 m asl in Tibet. They indicate that the subtropical global radiation reaches its highest energies on the High Plateau, thus making Tibet today's most important heating surface of the atmosphere. At glacial times 70% of those energies were reflected into space by the snow and firn of the 2.4 million km2 extended glacier area covering the upland. As a result, 32% of the entire global cooling during the ice ages, determined by the albedo, were brought about by this area — now the most significant cooling surface. The uplift of Tibet to a high altitude about 2.75 Ma ago, coincides with the commencement of the Quaternary Ice Ages. When the Plateau was lifted above the snowline (= ELA) and glaciated, this cooling effect gave rise to the global depression of the snowline and to the first Ice Age. The interglacial periods are explained by the glacial-isostatic lowering of Tibet by 650 m, having the effect that the initial Tibet ice – which had evoked the build-up of the much more extended lowland ices – could completely melt away in a period of positive radiation anomalies. The next ice age begins, when – because of the glacial-isostatic reverse uplift – the surface of the Plateau has again reached the snowline. This explains, why the orbital variations (Milankovic-theory) could only have a modifying effect on the Quaternary climate dynamic, but were not primarily time-giving: as long as Tibet does not glaciate automatically by rising above the snowline, the depression in temperature is not sufficient for initiating a worldwide ice age; if Tibet is glaciated, but not yet lowered isostatically, a warming-up by 4 °C might be able to cause an important loss in surface but no deglaciation, so that its cooling effect remains in a maximum intensity. Only a glaciation of the Plateau lowered by isostasy, can be removed through a sufficiently strong warming phase, so that interglacial climate conditions are prevailing until a renewed uplift of Tibet sets in up to the altitude of glaciation.An average ice thickness for all of Tibet of approximately 1000 m would imply that 2.2 million km3 of water were stored in the Tibetan ice sheet. This would correspond to a lowering in sea level of about 5.4 m. 相似文献
90.
祁连山摆浪河谷地的冰川地貌与冰期 总被引:10,自引:4,他引:10
祁连山摆浪河上游是一个以前研究者未曾涉足的地方,我们在这里发现6套保存完好的古冰川沉积和与之对应的冰水阶地以及上覆较厚的黄土 堆积,根据地貌地层学研究和^14C、TL、ESR测年,确认它们分别代表了小冰期、新冰期、同位素2阶段、4阶段、6阶段和12阶段6次冰川作用,是迄今在祁连山地区发现的相对比较确定的清晰齐全的第四纪冰川序列,发生于氧同位素12阶段的中梁赣冰期,表明抬升中的祁连山至少于460kaBP前与冰期气候耦合,进入了当时的冰冻圈。 相似文献