In the present study an analytical procedure based on finite element technique is proposed to investigate the influence of vertical load on deflection and bending moment of a laterally loaded pile embedded in liquefiable soil, subjected to permanent ground displacement. The degradation of subgrade modulus due to soil liquefaction and effect of nonlinearity are also considered. A free headed vertical concrete elastic nonyielding pile with a floating tip subjected to vertical compressive loading, lateral load, and permanent ground displacement due to earthquake motions, in liquefiable soil underlain by nonliquefiable stratum, is considered. The input seismic motions, having varying range of ground motion parameters, considered here include 1989 Loma Gilroy, 1995 Kobe, 2001 Bhuj, and 2011 Sikkim motions. It is calculated that maximum bending moment occurred at the interface of liquefiable and nonliquefiable soil layers and when thickness of liquefiable soil layer is around 60% of total pile length. Maximum bending moment of 1210 kNm and pile head deflection of 110 cm is observed because of 1995 Kobe motion, while 2001 Bhuj and 2011 Sikkim motions amplify the pile head deflection by 14.2 and 14.4 times and bending moment approximately by 4 times, when compared to nonliquefiable soil. Further, the presence of inertial load at the pile head increases bending moment and deflection by approximately 52% when subjected to 1995 Kobe motion. Thus, it is necessary to have a proper assessment of both kinematic and inertial interactions due to free field seismic motions and vertical loads for evaluating pile response in liquefiable soil. 相似文献
This study identified soft–sediment deformation structures(SSDS) of seismic origin from lacustrine sediments in the late Quaternary paleo–dammed lake at Tashkorgan, northeastern Pamir. The observed deformation structures include sand dykes, liquefied diapir and convolute structures, gravity induced SSDS, and thixotropic pillar and tabular structures. We conducted a preliminary study on the morphology, formation and trigger mechanisms of pillar and tabular structures formed by liquefaction of underlying coarse sand and thixotropy of the upper silty clay. The regional tectonic setting and distribution of lacustrine strata indicate that the most probable trigger for the SSDS in lacustrine sediments was seismic activity, with an approximate earthquake magnitude of M6.0; the potential seismogenic fault is the southern part of the Kongur normal fault extensional system. AMS 14 C dating results indicate that the SSDS were formed by seismic events occurring between 26050±100 yr BP and 22710±80 yr BP, implying intense fault activity in this region during the late Pleistocene. This study provides new evidence for understanding tectonic activity and regional geodynamics in western China. 相似文献
Flood stories in the Hebrew Bible and the Koran appear to be derived from earlier flood stories like those in the Gilgamesh Epic and still earlier in the Atrahasis. All would have their source from floods of the Tigris and Euphrates rivers.
The Gilgamesh Epic magnifies the catastrophe by having the flood begin with winds, lightning, and a shattering of the earth, or earthquake. Elsewhere in Gilgamesh, an earthquake can be shown to have produced pits and chasms along with gushing of water. It is commonly observed that earthquake shaking causes water to gush from the ground and leaves pits and open fissures. The process is known as soil liquefaction. Earthquake is also a possible explanation for the verse “all the fountains of the great deep (were) broken up” that began the Flood in Genesis. Traditionally, the “great deep” was the ocean bottom. A more recent translation substitutes “burst” for “broken up” in describing the fountains, suggesting that they erupted at the ground surface and were caused by an earthquake with soil liquefaction. Another relation between soil liquefaction and the Flood is found in the Koran where the Flood starts when “water gushed forth from the oven”. Soil liquefaction observed erupting preferentially into houses during an earthquake provides a logical interpretation if the oven is seen as a tiny house. A case can be made that earthquakes with soil liquefaction are embedded in all of these flood stories. 相似文献