首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1312篇
  免费   222篇
  国内免费   447篇
测绘学   12篇
大气科学   196篇
地球物理   292篇
地质学   930篇
海洋学   323篇
天文学   7篇
综合类   50篇
自然地理   171篇
  2024年   7篇
  2023年   23篇
  2022年   43篇
  2021年   54篇
  2020年   51篇
  2019年   75篇
  2018年   46篇
  2017年   68篇
  2016年   65篇
  2015年   67篇
  2014年   108篇
  2013年   125篇
  2012年   83篇
  2011年   81篇
  2010年   70篇
  2009年   111篇
  2008年   104篇
  2007年   93篇
  2006年   88篇
  2005年   63篇
  2004年   87篇
  2003年   61篇
  2002年   54篇
  2001年   33篇
  2000年   37篇
  1999年   28篇
  1998年   55篇
  1997年   24篇
  1996年   26篇
  1995年   23篇
  1994年   28篇
  1993年   19篇
  1992年   13篇
  1991年   18篇
  1990年   10篇
  1989年   12篇
  1988年   9篇
  1987年   5篇
  1986年   6篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1977年   1篇
  1976年   1篇
  1954年   1篇
排序方式: 共有1981条查询结果,搜索用时 15 毫秒
101.
Stratigraphic and structural correlations between the Palaeozoic massifs of eastern Morocco and northern Algeria allow three tectonic domains to be distinguished: (1) The cratonic zone, i.e. the West African platform which remained outside the Variscan chain and its peripherical margin (Moroccan Anti-Atlas and Algerian Ougarta); (2) a WSW-ENE trending zone, over 1500 km from Marrakech to Kabylia and Calabria (in their assumed Palaeozoic location). — This zone was characterized during the Late Palaeozoic by a continuous instability indicated by the development of successive turbiditic basins and a major orogeny at the Devonian-Carboniferous boundary; and (3) central and western Morocco, which corresponds to the external zones of the European Hercynides.The Marrakech-Kabylia zone separates the Variscan domain from the stable and undeformed West African craton. During Early Palaeozoic times it began as an extensive or transtensive zone. It has been deformed by the Late Devonian orogeny and by Carboniferous and Permian reactivation. The zone represents the southern limit of the Hercynian chain and is distinguished by its transcurrent regime throughout the Late Palaeozoic. Correspondence to: A. Piqué  相似文献   
102.
耦合海气动力学短期变率的数值研究   总被引:1,自引:1,他引:1  
为了探索全球性气候变化的年际变率,研制了一个复盖热带太平洋区域的耦合海气模式,并用来模拟ENSO变率的主要特征。数值试验结果与实况比较表明,对1982/1983年厄尔尼诺事件的主要特征模拟良好。基本结论是要考虑好关键要素和关键过程,即:平均风场和平均海温场;风和海温场的年循环;海洋表面层;三维海温平流;大气(水平方向)水汽辐合效应。  相似文献   
103.
Abstract Compositional variation of silicates (plagioclase, K-feldspar, epidote, titanite, garnet, white mica, biotite, chlorite), ilmenite, carbonates (calcite, ankerite) and apatite, in quartzofeldspathic lithologies of the Alpine Schist, New Zealand, is discussed in terms of increasing metamorphic grade and possible isograd-producing reactions. The mineral data, in conjunction with geological considerations, are used to determine polychronous P-T arrays of an early high P/T event (c. 16°C/kb; 5°C/km) overprinted by a lower P/T event (c. 50°C/kb; 15°C/km) that provides an estimation of Mesozoic and Cenozoic exhumation of schist of 11 to 13 km and 19 to 22 km respectively. The effects of possible shear heating and recrystallization to form K-feldspar zone schist near the Alpine Fault is consistent with movement along a mid to lower crustal detachment surface during Cenozoic shortening, and near isothermal exhumation of the schists to form the Southern Alps.  相似文献   
104.
We present the results of the application of three-dimensional Hilbert transformation to the analysis of airborne total field magnetic anomalies over part of Southeastern Nigeria. This study not only substantiates the usefulness of 3-D Hilbert transforms in the interpretation of magnetic anomaly maps but also more clearly delineates the structural pattern of the area, of study. Results from the previous study are discussed in relation to the results of previous geological and geophysical studies of the area.  相似文献   
105.
1993年第三季度,全球地震活动水平为中等偏高,明显高于上半年平均水平。日本北海道西南近海发生7.6级浅源地震,但不属于日本海沟地震。埃及西奈半岛发生5.7级地震,为今年亚欧带西段之最大地震。马里亚纳群岛发生8.1级中深震,使西北太平洋地区地震水平达到全球第一。兴都库什地区接连发生三次较大中深震,可能对我国西部地区地震活动有影响。墨西哥恰帕斯州近海发生7.3级地震,美洲带新的地震活动轮回正式开始。印度南部发生6.3级中强震,属于板内地震。  相似文献   
106.
The Southern Alps are the topographic expression of late Cenozoic (<8 Ma ago) uplift of the crust of the leading edge of the Pacific plate in South Island, New Zealand. New fission track data on the basement exposed in the Southern Alps quantify the age, amount, and rate of rock uplift, and in combination with geomorphic parameters permit the construction of a new model of the geomorphic evolution of the Southern Alps. The model emphasizes the development over time and space of rock uplift, mean surface elevation, exhumation of crustal section, and relief. The earliest indications of mean surface uplift are between 4 and 5 Ma ago at the Alpine Fault. Mean surface uplift, which lagged the start of rock uplift, propagated southeastward from the Alpine Fault at a rate of 30 km/Ma. By about 4 Ma ago, exhumation had exposed greywacke basement adjacent to and east of the entire 300 km long central section of the Alpine Fault. At 3 Ma ago, greenschist was exposed in the southern parts of the Southern Alps near Lake Wanaka, and since then has become exhumed along a narrow strip east of the Alpine Fault. The model infers that amphibolite grade schist has been exhumed adjacent to the Alpine Fault only in the last 0·3 Ma. The age of the start of rock uplift and the amount and rate of rock uplift, all of which vary spatially, are considered to be the dominant influences on the development of the landscape in the Southern Alps. The Southern Alps have been studied in terms of domains of different rock uplift rate. At present the rate of rock uplift varies from up to 8–10 mm/a adjacent to the Alpine Fault to 0·8–1·0 mm/a along the southeastern margin of the Southern Alps. This spectrum can be divided into two domains, one northwest of the Main Divide where the present rock uplift rates are very high (up to 8–10 mm/a) and exceed the long-term value of 0·8–1·0 mm/a, and another to the southeast of the Main Divide where the long-term rate is 0·8–1·0 mm/a. A domain of no uplift lies immediately to the east of the Southern Alps, and is separated from them by a 1·0–1·5 km step in the basement topography. We argue that this spatial sequence of uplift rate domains represents a temporal one. The existing models of the geomorphic development of the Southern Alps—the dynamic cuesta model of J. Adams and the numerical model of P. Koons—are compared with the new data and evolutionary model. Particular constraints unrealized by these two earlier models include the following: the earlier timing of the start of rock uplift of the Southern Alps (8 Ma ago); the spatial variation in the timing of the start of rock uplift (8 Ma ago to 3 Ma ago); the lower long-term rock uplift rate (0·8–1·0 mm/a) of the Southern Alps for most of the late Cenozoic; the lag between the start of rock uplift and the start of mean surface uplift; and the patterns of the amounts of late Cenozoic rock uplift and erosion across the Southern Alps.  相似文献   
107.
108.
The Andes between 36°30′ and 37°S represent a Cretaceous fold and thrust belt strongly reactivated in the late Miocene. Most of the features that absorbed Neogene shortening were already uplifted in the late Cretaceous, as revealed by field mapping and confirmed by previous fission track analysis. This Andean section is formed by two sectors: a western-inner sector generated by the closure of the upper Oligocene-lower Miocene intra-arc Cura Mallín basin between the middle and late Miocene (Guañacos fold and thrust belt), and an eastern-outer sector, where late Triassic-early Jurassic extensional depocenters were exhumed in two discrete phases of contraction, in the latest early Cretaceous and late Miocene to the Present, respectively (Chos Malal fold and thrust belt). Late Miocene deformation has not homogeneously reactivated Cretaceous compressive structures, being minimal south of 37°30′S through the eastern-outer sector (southern continuation of the Chos Malal fold and thrust belt). The reason for such an inhomogeneous deformational evolution seems to be related to the development of a late Miocene shallow subduction regime between 34°30′ and 37°45′S, as it was proposed in previous studies. This shallow subduction zone is evidenced by the eastward expansion of the arc that was accompanied by the eastern displacement of the orogenic front at these latitudes. As a result, the Cretaceous fold and thrust belt were strongly reactivated north of 37°30′S producing the major topographic break along the Southern Central Andes.  相似文献   
109.
1985年在甘肃文县屯寨乡洋汤寨的天池庙的大樑上发现了一条新的关于1879年7月1日武都8级地震的新的历史记载。该记载表明武都8级地震在这里的地震烈度至少达到了Ⅹ度。  相似文献   
110.
晚更新世以来南天山阿克苏地区地壳缩短率   总被引:10,自引:7,他引:10       下载免费PDF全文
汪新  John Suppe 《地质科学》2001,36(2):195-202
作者研究南天山中段阿克苏—库车山前带活动断层,发现断层切过托木尔峰山麓第四纪冰碛物和阶地,形成2条断层崖。通过测量阶地和冰碛物的变形量,推断阶地和冰碛物的沉积年代,估算南天山中段阿克苏地区晚更新世以来的地壳缩短率可能为1.85mm/a。这个缩短率与库尔勒地区(2mm/a)和柯坪地区(1.8mm/a)的地壳缩短率一致,但是小于南天山西段喀什地区(10±2mm/a)和天山东段玛纳斯地区(6±3mm/a)的地壳缩短率,表明天山不同地段的地壳缩短率存在明显差异。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号