首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3356篇
  免费   390篇
  国内免费   405篇
测绘学   115篇
大气科学   495篇
地球物理   1261篇
地质学   1236篇
海洋学   525篇
天文学   42篇
综合类   119篇
自然地理   358篇
  2024年   17篇
  2023年   27篇
  2022年   45篇
  2021年   78篇
  2020年   88篇
  2019年   100篇
  2018年   57篇
  2017年   127篇
  2016年   137篇
  2015年   159篇
  2014年   211篇
  2013年   167篇
  2012年   147篇
  2011年   221篇
  2010年   153篇
  2009年   233篇
  2008年   292篇
  2007年   239篇
  2006年   218篇
  2005年   184篇
  2004年   147篇
  2003年   128篇
  2002年   126篇
  2001年   97篇
  2000年   126篇
  1999年   94篇
  1998年   103篇
  1997年   72篇
  1996年   69篇
  1995年   51篇
  1994年   46篇
  1993年   35篇
  1992年   31篇
  1991年   24篇
  1990年   19篇
  1989年   22篇
  1988年   15篇
  1987年   8篇
  1986年   4篇
  1985年   6篇
  1984年   7篇
  1983年   2篇
  1982年   3篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1978年   6篇
  1977年   2篇
  1976年   1篇
  1954年   2篇
排序方式: 共有4151条查询结果,搜索用时 15 毫秒
11.
本文介绍了南极中山锚地的选择条件,勘测实施过程及水文、气象特点,并对测量区域作了分析研究与评价,科学地确定了适合科考船抛锚的锚地,致使“雪龙”船首次在中山锚地抛锚试抛成功,结束了中山站附近海域无锚地的历史。  相似文献   
12.
The Formation and Circulation of the Intermediate Water in the Japan Sea   总被引:1,自引:0,他引:1  
In order to clarify the formation and circulation of the Japan/East Sea Intermediate Water (JESIW) and the Upper portion of the Japan Sea Proper Water (UJSPW), numerical experiments have been carried out using a 3-D ocean circulation model. The UJSPW is formed in the region southeast off Vladivostok between 41°N and 42°N west of 136°E. Taking the coastal orography near Vladivostok into account, the formation of the UJSPW results from the deep water convection in winter which is generated by the orchestration of fresh water supplied from the Amur River and saline water from the Tsushima Warm Current under very cold conditions. The UJSPW formed is advected by the current at depth near the bottom of the convection and penetrates into the layer below the JESIW. The origin of the JESIW is the low salinity coastal water along the Russian coast originated by the fresh water from the Amur River. The coastal low salinity water is advected by the current system in the northwestern Japan Sea and penetrates into the subsurface below the Tsushima Warm Current region forming a subsurface salinity minimum layer. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
13.
Most marginal seas in the North Pacific are fed by nutrients supported mainly by upwelling and many are undersaturated with respect to atmospheric CO2 in the surface water mainly as a result of the biological pump and winter cooling. These seas absorb CO2 at an average rate of 1.1 ± 0.3 mol C m−2yr−1 but release N2/N2O at an average rate of 0.07 ± 0.03 mol N m−2yr−1. Most of primary production, however, is regenerated on the shelves, and only less than 15% is transported to the open oceans as dissolved and particulate organic carbon (POC) with a small amount of POC deposited in the sediments. It is estimated that seawater in the marginal seas in the North Pacific alone may have taken up 1.6 ± 0.3 Gt (1015 g) of excess carbon, including 0.21 ± 0.05 Gt for the Bering Sea, 0.18 ± 0.08 Gt for the Okhotsk Sea; 0.31 ± 0.05 Gt for the Japan/East Sea; 0.07 ± 0.02 Gt for the East China and Yellow Seas; 0.80 ± 0.15 Gt for the South China Sea; and 0.015 ± 0.005 Gt for the Gulf of California. More importantly, high latitude marginal seas such as the Bering and Okhotsk Seas may act as conveyer belts in exporting 0.1 ± 0.08 Gt C anthropogenic, excess CO2 into the North Pacific Intermediate Water per year. The upward migration of calcite and aragonite saturation horizons due to the penetration of excess CO2 may also make the shelf deposits on the Bering and Okhotsk Seas more susceptible to dissolution, which would then neutralize excess CO2 in the near future. Further, because most nutrients come from upwelling, increased water consumption on land and damming of major rivers may reduce freshwater output and the buoyancy effect on the shelves. As a result, upwelling, nutrient input and biological productivity may all be reduced in the future. As a final note, the Japan/East Sea has started to show responses to global warming. Warmer surface layer has reduced upwelling of nutrient-rich subsurface water, resulting in a decline of spring phytoplankton biomass. Less bottom water formation because of less winter cooling may lead to the disappearance of the bottom water as early as 2040. Or else, an anoxic condition may form as early as 2200 AD. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
14.
A series of laboratory experiments was carried out to investigate the strong reflection of regular water waves over a train of submerged breakwaters. Rectangular and trapezoidal shapes of submerged breakwaters are employed and compared for reflecting capability of incident waves. Measured reflection coefficients of regular waves over impermeable submerged breakwaters are verified by comparing with those of the eigenfunction expansion method. A very good agreement is observed. Reflection coefficients of permeable submerged breakwaters are less than those of impermeable breakwaters. The trapezoidal shape is recommended for a submerged breakwater in terms of reflecting capability and practical application.  相似文献   
15.
依据水面红外发射和红外遥感测温原理,采用HDG-高灵敏度红外测温仪和常规测量仪器相结合的方法,在实验室空气稳定条件下,模拟测得了水面皮层破坏-复原(重建)的热力过程和气-水温差对水面皮层复原过程的影响,获得了大量的测量数据。数据分析表明,当气-水温差从3.0℃变为11.5℃时,水面皮层破坏可导致皮温增量从气-水温差3.0℃时的0.15℃变到11.5℃时的0.45℃,并发现恢复时间与气-水温差呈负线性关系。  相似文献   
16.
The recent sea-ice reduction in the Arctic Ocean is not spatially uniform, but is disproportionally large around the Northwind Ridge and Chukchi Plateau compared to elsewhere in the Canada Basin. In the Northwind Ridge region, Pacific Summer Water (PSW) delivered from the Bering Sea occupies the subsurface layer. The spatial distribution of warm PSW shows a quite similar pattern to the recent ice retreat, suggesting the influence of PSW on the sea-ice reduction. To understand the regionality of the recent ice retreat, we examine the dynamics and timing of the delivery of the PSW into this region. Here, we adopt a two-layer linearized potential vorticity equation to investigate the behavior of Rossby waves in the presence of a topographic discontinuity in the high latitude ocean. The analytical results show a quite different structure from those of mid-latitude basins due to the small value of β. Incident barotropic waves excited by the sea-ice motion with large annual variation can be scattered into both barotropic and baroclinic modes at the discontinuity. Since the scattered baroclinic Rossby wave with annual frequency cannot propagate freely, a strong baroclinic current near the topographic discontinuity is established. The seasonal variation of current near the topographic discontinuity would cause a kind of selective switching system for shelf water transport into the basin. In our simple analytical model, the enhanced northward transport of summer water and reduced northward transport of winter water are well demonstrated. The present study indicates that these basic dynamics imply that a strengthening of the surface forcing during winter in the Canada Basin could cause sea-ice reduction in the Western Arctic through the changes of underlying Pacific Summer Water.  相似文献   
17.
A preliminary optical classification of lakes in Estonia and south Finland which can also be used for small bays of the Baltic Sea is elaborated. The classification is based on the optical properties of water (diffuse attenuation coefficient, diffuse reflectance) and parameters that are routinely monitored in water bodies (Secchi depth, concentration of chlorophyll-a, total suspended matter and yellow substance). The data complex used for our classification covers different types of water ecosystems (ranging from oligotrophic to hypertrophic) and the variability of water constituent concentrations in the ice-free period in Estonia and south Finland. Using cluster analysis, we found 5 optical classes of waters: clear (C), moderate (M), turbid (T), very turbid (V) and brown (B). There is satisfactory correspondence between class of water, shape of diffuse attenuation coefficient and diffuse reflectance spectra and trophic state of the lakes.  相似文献   
18.
Since the Intermediate Oyashio Water (IOW) gradually accumulates in Sagami Bay, it can reasonably be supposed that the IOW also flows out from Sagami Bay, even though it may be altered by mixing with other waters. We have occasionally observed a water less than 34.2 psu with a potential density of 26.8 at the southeastern area off Izu Peninsula in July 1993 by the training vessel Seisui-maru of Mie University. Observational data supplied by the Japan Meteorological Agency and the Kanagawa Prefectural Fisheries Experimental Station show that the IOW of less than 34.1 psu was observed at northern stations of the line PT (KJ) off the Boso Peninsula and to the east of Oshima in the late spring 1993. Based upon these observations, it is concluded that the IOW flows out from Sagami Bay into the Shikoku Basin along southeastern area off the Izu Peninsula. The less saline water (<34.2 psu) was also observed to the west of Miyake-jima during the same cruise, and the westward intrusion of IOW from south of the Boso Peninsula to the Shikoku Basin through the gate area of the Kuroshio path over the Izu Ridge was detected. This event indicated that the IOW branched south of the Boso Peninsula and flowed into Sagami Bay and/or into the gate area over the Izu Ridge. The southward intrusion of IOW into the south of the Boso Peninsula is discussed in relation to the latitudinal location of the main axes of the Kuroshio and the Oyashio. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
19.
作者对加州鲈鱼繁殖习性及早期胚胎发育进行了阐述,对受精卵孵化与水温的关系进行了研究。结果表明:加州鲈鱼2龄即达性成熟,3—6月繁殖产卵,水温20℃—24℃时达产卵盛期;雄鱼具有筑巢护卵及护苗等生殖习性;水温17.4℃—19.5℃,平均18.3℃时,受精卵孵化时数为74小时25分钟;在实验温度范围内,孵化时数与水温负相关,而与有效积温正相关。有效积温与平均水温负相关。  相似文献   
20.
本文分析了雷达观测结果,发现近海海面上的水汽向上输送随季节而变化,由于季节的变化和不同的天气情况,海表面大气现象在雷达中有不同的显示,根据这些显示得到了不同的信息,由此而得出春秋两季海表面水汽向上输送量的不同。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号