首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5994篇
  免费   858篇
  国内免费   2105篇
测绘学   106篇
大气科学   1094篇
地球物理   1082篇
地质学   3637篇
海洋学   2148篇
天文学   55篇
综合类   211篇
自然地理   624篇
  2024年   47篇
  2023年   116篇
  2022年   270篇
  2021年   255篇
  2020年   372篇
  2019年   358篇
  2018年   336篇
  2017年   418篇
  2016年   350篇
  2015年   365篇
  2014年   566篇
  2013年   733篇
  2012年   485篇
  2011年   306篇
  2010年   218篇
  2009年   321篇
  2008年   351篇
  2007年   342篇
  2006年   343篇
  2005年   312篇
  2004年   292篇
  2003年   246篇
  2002年   244篇
  2001年   184篇
  2000年   173篇
  1999年   159篇
  1998年   131篇
  1997年   127篇
  1996年   94篇
  1995年   66篇
  1994年   103篇
  1993年   74篇
  1992年   43篇
  1991年   37篇
  1990年   20篇
  1989年   22篇
  1988年   18篇
  1987年   12篇
  1986年   9篇
  1985年   11篇
  1984年   7篇
  1983年   4篇
  1982年   6篇
  1981年   5篇
  1979年   2篇
  1976年   1篇
  1973年   1篇
  1954年   2篇
排序方式: 共有8957条查询结果,搜索用时 281 毫秒
991.
南海北部地震危险性分析   总被引:4,自引:1,他引:4  
在建立了比较可靠的南海北部地震目录以后,采用编制中国地震动参数区划图(2001)的方法,重新划分了南海北部海域的潜在震源区和调整了相关的地球物理参数,最终计算了南海北部海域50年超越概率10%的地震动峰值加速度。南海北部的地震动峰值加速度可分成东部高值区和西部低值区。东区的地震动峰值加速度在0.160g以上,西区大部分海域的地震动峰值加速度小于0.114g,并且与它们北侧的陆区大致相似。  相似文献   
992.
尽管南海已进行深入的调查与研究,提出多种成因模型,包括挤出模型、弧后扩张模型、古南海俯冲拖曳模型等,但因其所处构造位置特殊,周边构造环境经历了复杂的改造,所有成因模式均未能得到广泛的认可。本文从三大板块相互作用入手,结合南海实测数据,提出南海形成的弧后扩张—左旋剪切模型。认为南海是古南海往北俯冲的弧后盆地,菲律宾海板块往北漂移形成的大规模左旋走滑是南海扩张的触发因素。印度—欧亚碰撞产生中南半岛挤出主要影响西南海盆扩张方向,使得扩张轴从近东西向转为北东向。南海及邻区晚中生代以来的演化可以分为以下阶段:1)早白垩世开始澳大利亚板块往北漂移,新特提斯洋往北俯冲消亡,导致弧后扩张,形成古南海;2)晚白垩世末—始新世,古南海往北俯冲,导致弧后拉张形成陆缘裂谷;3)早渐新世,受菲律宾海板块西缘大型左旋走滑影响,在原有裂谷的基础上从东往西海底扩张,形成南海;4)渐新世末,受俯冲后撤的影响,扩张中心往南跃迁,同时受西缘断裂左旋活动的影响,扩张轴从近东西西逐步转为北东向;5)早中新世晚期,南沙地块—北巴拉望地块与卡加延脊碰撞,南海扩张停止。  相似文献   
993.
ABSTRACT

We investigated the oceanic crustal structure and lithospheric dynamics of the South China Sea (SCS) basin through a comprehensive analysis of residual gravity anomaly and bathymetry combined with seismic constraints and interpretation from geodynamic modelling. We first calculated the residual mantle Bouguer anomaly (RMBA) of the oceanic crustal regions of the SCS by removing from free-air gravity anomaly the predicted gravitational attractions of water-sediment, sediment-crust, and crust-mantle interfaces, as well as the effects of lithospheric plate cooling, using the latest crustal age constraints including IODP Expedition 349 and recent deep-tow magnetic surveys. We then calculated models of the gravity-derived crustal thickness and calibrated them using the available seismic refraction profiles of the SCS. The gravity-derived crustal thickness models correlate positively with seismically determined crustal thickness values. Our analysis revealed that the isochron-averaged RMBA are consistently more negative over the northern flank of the SCS basin than the southern conjugate for magnetic anomaly chrons C8n (~25.18 Ma) to C5Dn (~17.38 Ma), implying warmer mantle and/or thicker crust over much of the northern flank. Computational geodynamic modelling yielded the following interpretations: (1) Models of asymmetric and variable spreading rates based on the relatively high-resolution deep-tow magnetic analysis would predict alternating thicker and thinner crust at the northern flank than the southern conjugate, which is inconsistent with the observed systematically thicker crust on the northern flank. (2) Models of episodic southward ridge jumps could reproduce the observed N-S asymmetry, but only for crustal age of 23.6–20 Ma. (3) Southward migration of the SCS ridge axis would predict slightly thinner crust at the northern flank, which is inconsistent with the observations. (4) Models of higher mantle temperatures of up to 25–50°C or >2% less depleted mantle sources on the northern flank could produce large enough anomalies to explain the observed N-S asymmetries.  相似文献   
994.
ABSTRACT

A typical diachronous breakup developed in the South China Sea (SCS); the breakup has been unequivocally identified, and gradually decreases in age from NE to SW. To illustrate the influence of a diachronous breakup on hydrocarbon accumulation, we used seismic profiles from CNOOC, and analysed crustal extension characteristics, sedimentary style and source rock accumulation. The main conclusions are as follows: (1) Because of the diachronous breakup in the SCS, various tectonic units developed in different positions on the northern continental margin with different degrees of extension. The Pearl River Mouth Basin (PRMB) is closer to the central sea basin of the SCS and has been affected by regional tension stress for a longer time. Tectonic units of proximal domain, necking zone, and distal margin types developed, and the crust structure thinned from the land towards the sea. The Qiongdongnan Basin (QB) is closer to the Southwest Sub-basin. There are symmetrical proximal domains on the southern and northern sides of the QB, with a necking zone in the central part. It presents as an abandoned passive continental margin. (2) The PRMB exhibited rifted cells first, followed by canyon type extensional faulting and horizontal axial transportation, and then by a longitudinal shelf-slope sedimentary style. But the QB has only rifted cells and canyon type faulting stages, no longitudinal shelf-slope sedimentary stage. The major source rocks in the northern SCS become younger from east to west, and the sedimentary facies change from lacustrine facies to marine-continental transitional facies. (3) The diachronous breakup process ultimately affecting oil and gas migration and accumulation process. The PRMB is dominated by deep-water shelf break accumulation with deep-water fan reservoir bodies. The QB is dominated by canyon type accumulation with channels.  相似文献   
995.
徐通  张晓团  焦建刚  张红强  贾力 《地质学报》2020,94(12):3607-3624
纸房沟岩片位于勉略构造带略阳地区。通过细致的岩石学和地球化学研究,将纸房沟岩片内的火山岩分为拉斑玄武岩系列(Ⅰ类)和钙碱性火山岩系列(Ⅱ类)。Ⅰ类火山岩稀土配分曲线左倾,富Na贫P,整体具有N- MORB特点,形成于洋脊构造环境。相比Ⅰ类火山岩,Ⅱ类火山岩具有更高的SiO2(49.02%~61.86%)和K2O(0.32%~1.55%)含量,相对亏损Nb、Ta、P和Ti,形成于陆缘弧构造环境。Ⅱ类火山岩锆石Lu- Hf同位素测试结果显示,εHf(t)值主体为负值,介于-8.01~+0.77,表明其主要为古老地壳物质熔融成因。Ⅱ类火山岩LA- ICP- MS锆石U- Pb测年结果为854±3Ma(MSWD=0.12, n=30)、844±4Ma (MSWD=0.03, n=15),表明纸房沟岩片火山岩结晶时代为新元古代早中期。综合前人成果认为,纸房沟岩片火山岩为新元古代勉略洋盆俯冲的产物,俯冲作用一直持续到800Ma左右,该俯冲过程很可能是对全球性Rodinia超大陆聚合事件的响应。  相似文献   
996.
997.
《China Geology》2020,3(4):591-601
The Sichuan Basin is one of the vital basins in China, boasting abundant hydrocarbon reservoirs. To clarify the intensity of the tectonic stress field of different tectonic episodes since the Mesozoic and to identify the regional dynamic background of different tectonic movements in the Sichuan Basin and its adjacent areas, the characteristics of the acoustic emission in rocks in different strata of these areas were researched in this paper. Meanwhile, the tectonic stress magnitude in these areas since the Mesozoic was restored. The laws state that the tectonic stress varied with depth was revealed, followed by the discussion of the influence of structural stress intensity on structural patterns in different tectonic episodes. These were conducted based on the paleostress measurement by acoustic emission method and the inversion principle of the stress fields in ancient periods and the present, as well as previous research achievements. The results of this paper demonstrate that the third episode of Yanshanian Movement (Yanshanian III) had the maximum activity intensity and tremendously influenced the structural pattern in the study area. The maximum horizontal principal stress of Yanshanian III varied with depth as follows: 0.0168 x + 37.001 (MPa), R2 = 0.8891. The regional structural fractures were mainly formed in Yanshanian III in Xujiahe Formation, west Sichuan Basin, of which the maximum paleoprincipal stress ranging from 85.1 MPa to 120.1 MPa. In addition, the law stating the present maximum horizontal principal stress varies with depth was determined to be 0.0159 x+10.221 (MPa), R2=0.7868 in Wuling Mountain area. Meanwhile, it was determined to be 0.0221 x+9.4733 (MPa), R2=0.9121 in the western part of Xuefeng Mountain area and 0.0174 x+10.247 (MPa), R2=0.8064 in the whole study area. These research results will not only provide data for the simulation of stress field, the evaluation of deformation degree, and the prediction of structural fractures, but also offer absolute geological scientific bases for the elevation of favorable shale gas preservation.  相似文献   
998.
《China Geology》2020,3(3):362-368
Gas hydrate is one kind of potential energy resources that is buried under deep seafloor or frozen areas. The first trial offshore production from the silty reservoir was conducted in the South China Sea by the China Geological Survey (CGS). During this test, there were many unique characteristics different from the sand reservoir, which was believed to be related to the clayed silt physical properties. In this paper, simulation experiments, facilities analysis, and theoretical calculation were used to confirm the hydrate structure, reservoir thermo-physical property, and bond water movement rule. And the behavior of how they affected production efficiency was analyzed. The results showed that: It was reasonable to use the structure I rather than structure II methane hydrate phase equilibrium data to make the production plan; the dissociation heat absorbed by hydrate was large enough to cause hydrate self-protection or reformation depend on the reservoir thermal transfer and gas supply; clayed silt got better thermal conductivity compared to coarse grain, but poor thermal convection especially with hydrate; clayed silt sediment was easy to bond water, but the irreducible water can be exchanged to free water under high production pressure, and the most obvious pressure range of water increment was 1.9–4.9 MPa.  相似文献   
999.
基于南黄海海域实测高精度航空重、磁数据,结合航空重、磁场及物性特征,通过平均对数功率谱分析匹配滤波方法技术,对南黄海海相地层界面起伏引起的重、磁异常特征进行分离、提取,采用切线法和外奎尔法计算海相地层界面的深度,经地质和地球物理综合解释,编制了南黄海海相地层底界面、顶界面深度图及海相地层厚度图。在此基础上,初步划分了南黄海海相地层构造单元,探讨了南黄海海相地层的分布特征。苏北—南黄海坳陷区的中部坳陷和南部坳陷均发育在强磁性基底之上,构造变形较弱,海相地层保存完整,埋藏浅,厚度为4~8 km,是南黄海地区具有较大资源潜力的油气勘探区。  相似文献   
1000.
Based on NCEP/NCAR gridded reanalysis, TRMM precipitation data, CMAP, and rainfall observations in East China, a study is conducted with focus on the timing and distinctive establishment of the rainy season of the East Asian subtropical monsoon (EASM) in relation to the South China Sea (SCS) tropical summer monsoon (SCSM). A possible mechanism for the EASM is investigated. The results suggest that 1) the EASM rainy season begins at first over the south of the Jiangnan region to the north of South China in late March to early April (i.e., pentads 16-18), and then the early flooding period in South China starts when southerly winds enhance and convective rainfall increases pronouncedly; 2) the establishment of the EASM rainy season is earlier than that of its counterpart, the SCSM. The EASM and the SCSM each is featured with its own independent rain belt, strong southwesterly wind, intense vertical motion, and robust low-level water vapor convergence. The SCSM interacts with the EASM, causing the EASM rainy belt to move northward. The two systems are responsible for the floods/droughts over the eastern China; and 3) in mid-late March, the eastern Asian landmass (especially the Tibetan Plateau) has its thermal condition changing from a cold to a heat source for the atmosphere. A reversal of the zonal thermal contrast and related temperature and pressure contrasts between the landmass and the western Pacific happens. The argument about whether or not the dynamic and thermal effects of the landmass really act as a mechanism for the earlier establishment of the EASM rain belt is discussed and to be further clarified. Finally, the article presents some common understandings and disagreements regarding the EASM.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号