首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2661篇
  免费   445篇
  国内免费   390篇
测绘学   111篇
大气科学   400篇
地球物理   1103篇
地质学   1144篇
海洋学   172篇
天文学   32篇
综合类   124篇
自然地理   410篇
  2024年   3篇
  2023年   25篇
  2022年   47篇
  2021年   45篇
  2020年   74篇
  2019年   73篇
  2018年   45篇
  2017年   95篇
  2016年   139篇
  2015年   134篇
  2014年   165篇
  2013年   126篇
  2012年   114篇
  2011年   184篇
  2010年   116篇
  2009年   220篇
  2008年   204篇
  2007年   187篇
  2006年   167篇
  2005年   168篇
  2004年   122篇
  2003年   97篇
  2002年   97篇
  2001年   123篇
  2000年   80篇
  1999年   80篇
  1998年   84篇
  1997年   61篇
  1996年   51篇
  1995年   50篇
  1994年   59篇
  1993年   43篇
  1992年   38篇
  1991年   28篇
  1990年   22篇
  1989年   17篇
  1988年   14篇
  1987年   15篇
  1986年   16篇
  1985年   12篇
  1984年   15篇
  1983年   9篇
  1982年   3篇
  1981年   5篇
  1980年   7篇
  1979年   4篇
  1978年   5篇
  1977年   3篇
  1976年   2篇
  1954年   2篇
排序方式: 共有3496条查询结果,搜索用时 31 毫秒
271.
http://www.sciencedirect.com/science/article/pii/S1674987110000113   总被引:3,自引:0,他引:3  
<正>Against the current background of global climate change,the study of variations in the soil carbon pool and its controlling factors may aid in the evaluation of soil's role in the mitigation or enhancement of greenhouse gas.This paper studies spatial and temporal variation in the soil carbon pool and their controlling factors in the southern Song-nen Plain in Heilongjiang Province,using soil data collected over two distinct periods by the Multi-purpose Regional Geochemical Survey in 2005—2007, and another soil survey conducted in 1982—1990.The study area is a carbon source of 1479 t/km~2 and in the past 20 years,from the 1980s until 2005.the practical carbon emission from the soil was 0.12 Gt.Temperature,which has been found to be linearly correlated to soil organic carbon,is the dominant climatologic factor controlling soil organic carbon contents.Our study shows that in the relevant area and time period the potential loss of soil organic carbon caused by rising temperatures was 0.10 Gt,the potential soil carbon emission resulting from land-use change was 0.09 Gt,and the combined potential loss of soil carbon(0.19 Gt) caused by warming and land-use change is comparable to that of fossil fuel combustion(0.21 Gt).Due to the time delay in soil carbon pool variation,there is still 0.07 Gt in the potential emission caused by warming and land-use change that will be gradually released in the future.  相似文献   
272.
The dispersion characteristics of shallow water can be described by the dispersion curves, which contain substantial ocean parameter information. A fast ocean parameter inversion method based on dispersion curves with a single hydrophone is presented in this paper. The method is achieved through Bayesian theory. Several sets of dispersion curves extracted from measured data are used as the input function. The inversion is performed by matching a replica calculated with a dispersion formula. The bottom characteristics can be described by the bottom reflection phase shift parameter P. The propagation range and the depth can be inverted quickly when the seabed parameters are represented by on parameter P. The inversion results improve the inversion efficiency of the seabed parameters. Consequently, the inversion efficiency and accuracy are improved while the number of inversion parameters is decreased and the computational speed of replica is increased. The inversion results have lower error than the reference values, and the dispersion curves calculated with inversion parameters are also in good agreement with extracted curves from measured data; thus, the effectiveness of the inversion method is demonstrated.  相似文献   
273.
Andean grasslands ecosystems are fragile environments with rigorous climatologic conditions and low and variable food for the grazing. The Apolobamba area is located in the Bolivian Andean Mountains. Its high grasslands provide a natural habitat for wild and domestic camelids such as vicuna(Vicugna vicugna) and alpaca(Lama pacos). The botanical diversity plays an essential role in maintaining vital ecosystem functions. The objectives of this research were to determine the seasonal changes in soil properties, to study the vegetation changes during the wet and dry seasons and the influence of soil properties and camelid densities on the vegetation in the Apolobamba grasslands. Four zones with different vicuna populations were selected to be studied. The following soil parameters were determined: total organic carbon, total nitrogen, available phosphorous, cation exchange capacity, exchangeable cations, pH and texture. The vegetation season changes were studied through botanical identification, above-ground biomass, plant cover and species richness. Results showed that some soil properties such as C/N ratio, CEC, silt and clay percentages kept stable against the seasonal changes. Generally, soil nutrients were relatively higher during the dry season in the surface and subsurface. The results did not point out the predominant vegetation growth during the wet season. The seasonal vegetation growth depended on each species. Thegood soil fertility corresponded to the highest plant cover. Soil fertility presented no influence on the above-ground biomass of the collected species. The negative influence of camelid grazing on soil properties could not be assessed. However, overgrazing could affect some plant species. Therefore, protection is needed in order to preserve the biodiversity in the Andean mountain grasslands.  相似文献   
274.
Are there some relationships among species diversity and soil chemical properties of high altitude natural grasslands? Plant community composition and chemical properties of soil samples were compared to investigate the relationship between soil and species diversity, and the richness in Tibetan alpine grasslands. Results showed that species diversity was significantly positively related to soil organic matter (SOM), total nitrogen (TN), available nitrogen (AN), total phosphorus (TP), available phosphorus (AP), and available potassium (AK) in the high alpine grasslands. Margalefs species richness index was also significantly positively related to SOM, TN, AN, and TP. Most soil chemical properties showed significantly positive correlation with species diversity and Margalef's richness index. Our results suggested that higher plant species richness index and diversity occurred in more fertile soil habitats in high altitude natural grassland community. In practice, fertilization management for the restoration of degraded grassland should be conducted with reference to the nutrient levels ofnatural grassland without the additional artificial fertilizer and with higher species-diversity and richness index.  相似文献   
275.
【Title】

【Author】

【Addresses】1

The tree root distribution pattern and biomass of seventeen year old trees of Grewia optiva, Morus alba, Celtis australis, Bauhinia variegata and Robinia pseudoacacia were studied by excavation method. B. variegata roots penetrated to a maximum depth of 4.78 m, whereas, M. alba roots were found down to 1.48 m depth. Lateral spread was minimum in B. variegata (1.10 m)and maximum inR. pseudoacacia (7.33 m). Maximum root biomass of 6.30 kg was found in R. pseudoacacia and minimum (2.43 kg) was found in M. alba. For four species viz.,G. optiva, M. alba, C. australis andR. pseudoacacia, 68%-87% root biomass occurred within top 0-30 cm soil depth, but forB. variegata this was only45%. The soil binding factor was maximum in G. optiva and minimum in B. variegata. Soil physico-chemical properties also showed wide variation. The study suggests thatB. variegata with a deep root system is the most suitable species for plantation under agroforestry systems. R. pseudoacacia and G. optiva with deep root systems, more lateral spread and high soil binding factor are suitable for plantation on degraded lands for soil conservation.  相似文献   
276.
Assessing and managing the spatial variability of hydropedological properties are important in environmental,agricultural,and geological sciences.The spatial variability of soil apparent electrical conductivity(ECa) measured by electromagnetic induction(EMI) techniques has been widely used to infer the spatial variability of hydrological and pedological properties.In this study,temporal stability analysis was conducted for measuring repeatedly soil ECa in an agricultural landscape in 2008.Such temporal stability was statistically compared with the soil moisture,terrain indices(slope,topographic wetness index(TWI),and profile curvature),and soil properties(particle size distribution,depth to bedrock,Mn mottle content,and soil type).Locations with great and temporally unstable soil ECa were also associated with great and unstable soil moisture,respectively.Soil ECa were greater and more unstable in the areas with great TWI(TWI 〉 8),gentle and concave slope(slope 〈 3%; profile curvature 〉 0.2).Soil ECa exponentially increased with depth to bedrock,and soil profile silt and Mn mottle contents(R2= 0.57),quadratically(R2 = 0.47),and linearly(R 2 = 0.47),respectively.Soil ECa was greater and more unstable in Gleysol and Nitosol soils,which were distributed in areas with low elevation(〈 380 m),thick soil solum(〉 3 m),and fluctuated water table(shallow in winter and spring but deep in summer and fall).In contrast,Acrisol,Luvisol,and Cambisol soils,which are distributed in the upper slope areas,had lower and more stable soil ECa.Through these observations,we concluded that the temporal stability of soil ECa can be used to interpret the spatial and temporal variability of these hydropedological properties.  相似文献   
277.
We investigated whether species richness, diversity and density of understory herbaceous plants differed along logging(gap) and grazing(primarily by cattle) disturbance gradients, and sought to identify drivers of richness, diversity and density of understory vegetation of logged sites. A factorial experiment was conducted in the mixed conifer forest of Gidakom in Western Bhutan. Levels of the logging treatment included small(0.15 – 0.24 ha), medium(0.25 – 0.35 ha) and large(0.36 – 1.31 ha) gaps. The grazing treatment included grazed(primarily by cattle) and ungrazed(where herbivores were excluded by a fence) plots nested within each gap. Data were collected from 12 gaps(4 replicates at each level of logging) using the point intercept method. Shannon Weaver Diversity and Margalef's indices were used to estimate species diversity and describe species richness, respectively. Soil samples were analyzed for pH and nutrients. The interaction effect of logging and grazing was significant(p≤0.001) only on species diversity. Relative to ungrazed areas, species diversity was significantly higher(0.01≤p≤0.05) in medium grazed gaps. Under grazed conditions, soil P was negatively correlated with gap size and species diversity. While species diversity was positivelycorrelated(0.01≤p≤0.05) with soil N in grazed plots species richness was positively correlated(0.001≤p≤0.01) with soil N in ungrazed plots. Relative density of Yushania microphylla and Carex nubigena were higher under ungrazed conditions. Our study suggests that the combined effect of cattle grazing and logging results in higher species diversity of understory vegetation in medium and grazed gaps in mixed conifer forests of Bhutan,whereas increase or decrease in relative density of major species is determined primarily by the independent effects of grazing and logging. From management perspective, forest managers must refrain from creating large gaps to avoid loss of nutrients(mainly P and N), which may eventually affect tree regeneration. Managers intending to maintain understory vegetation diversity must consider the combined effects of grazing and logging, ensuring low to moderate grazing pressure.  相似文献   
278.
279.
复杂地形区陆面资料对WRF模式模拟性能的影响   总被引:2,自引:0,他引:2  
本文利用WRF(Weather Research and Forecasting)模式耦合Noah陆面过程模式,对比研究了使用不同精度陆面资料:WRF默认陆面资料、中国1 km分辨率数字高程模型数据集、2006年MODIS(MODerate-resolution Imaging Spectroradiometer)土地利用和植被覆盖度资料,WRF模式对兰州地区冬季气象场模拟结果的差异。结果表明,近地面气温对陆面资料的精度非常敏感,而风场对陆面资料的精度不敏感,WRF模式对气温的模拟效果好于对风场模拟。采用高精度且时效性好的陆面资料后,WRF模拟的近地面气温准确率提高了15.8%,模拟的夜间气温改进幅度较白天大。陆面资料可影响整个边界层温度场分布,准确的陆面资料对提高WRF模式模拟近地面乃至整个边界层气象场至关重要。尽管风速模拟误差较大,但总体上WRF模式能较准确地模拟出研究区的风场演变特征。使用新的陆面资料后WRF模拟的风速误差略有减小,风向误差略有增加。干旱半干旱区冬季数值模拟需要注意土壤湿度初值和模式初始积分时刻对模拟结果的影响。  相似文献   
280.
CLM4.0模式对中国区域土壤湿度的数值模拟及评估研究   总被引:7,自引:2,他引:5  
本文利用普林斯顿大学全球大气强迫场资料,驱动公用陆面过程模式(Community Land Model version 4.0,CLM4.0)模拟了中国区域1961~2010年土壤湿度的时空变化。将模拟结果与观测结果、美国国家环境预报中心再分析数据(National Centers for Environmental Prediction Reanalysis,NCEP)和高级微波扫描辐射计(Advanced Microwave Scanning Radiometer-EOS,AMSR-E)反演的土壤湿度进行了对比分析,结果表明CLM4.0模拟结果可以反映出中国区域观测土壤湿度的空间分布和时空变化特征,但东北、江淮和河套三个地区模拟值相对于观测值在各层次均系统性偏大。模拟与NCEP再分析土壤湿度的空间分布基本一致,与AMSR-E的反演值在35°N以北的分布也基本一致;从1961~2010年土壤湿度模拟结果分析得出,各层土壤湿度空间分布从西北向东南增加。低值区主要分布在新疆、青海、甘肃和内蒙古西部地区。东北平原、江淮地区和长江流域为高值区。土壤湿度数值总体上从浅层向深层增加。不同深度土壤湿度变化趋势基本相同。除新疆西部和东北部分地区外,土壤湿度在35°N以北以减少趋势为主,30°N以南的长江流域、华南及西南地区以增加为主。在全球气候变暖的背景下,CLM4.0模拟的夏季土壤湿度在不同程度上响应了降水的变化。中国典型干旱区和半干旱区土壤湿度减小,湿润区增加。其中湿润区土壤湿度对降水的响应最为显著,其次是半干旱区和干旱区。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号