首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   6篇
  国内免费   41篇
测绘学   1篇
大气科学   5篇
地球物理   16篇
地质学   84篇
海洋学   3篇
  2022年   4篇
  2021年   4篇
  2020年   8篇
  2019年   3篇
  2018年   1篇
  2017年   6篇
  2016年   5篇
  2015年   3篇
  2014年   9篇
  2013年   6篇
  2012年   2篇
  2011年   4篇
  2010年   2篇
  2009年   7篇
  2008年   7篇
  2007年   7篇
  2006年   6篇
  2005年   4篇
  2004年   1篇
  2003年   2篇
  2002年   5篇
  2001年   5篇
  2000年   4篇
  1998年   2篇
  1997年   1篇
  1982年   1篇
排序方式: 共有109条查询结果,搜索用时 437 毫秒
51.
周晔  侯增谦  郑远川  许博  王瑞  罗晨皓 《岩石学报》2017,33(7):2143-2160
六合地区地处扬子克拉通的西缘,前人对该地区下地壳的成分与形成机制尚无系统认识。本文通过研究新生代幔源侵入岩中所携带的深源捕虏体为认识该地区下地壳的成分和形成机制提供了直接证据。该捕虏体为高级正变质岩(麻粒岩相),岩性分别为石榴石透辉岩、石榴石角闪透辉岩、石榴石角闪岩。三者全岩Si O2=43.85%~50.82%,MgO=6.83%~14.77%,Mg#=0.50~0.64,Cr=87.1×10~(-6)~616×10~(-6),Ni=19.7×10~(-6)~143×10~(-6),皆属于低镁石榴石堆晶岩。通过石榴石-单斜辉石Mg-Fe交换地质温度计计算得知石榴石角闪岩的形成温度721~774℃,形成深度为45~47km,石榴石角闪透辉岩和石榴石透辉岩的形成温度803~829℃,形成深度为48~51km,说明三者皆形成于下地壳。捕虏体锆石多为变质锆石,锆石U-Pb年龄分别为259±9Ma和773±23Ma。捕虏体的全岩Sm-Nd等时线年龄分别为251±4Ma和809±64Ma。259Ma的锆石εHf(t)=-5.69~10.3,773Ma的锆石εHf(t)=5.87~17.7。年代学数据和锆石Hf同位素数据表明六合地区下地壳受到新元古代和晚二叠世岩浆底侵作用,同时发生变质作用。新元古代捕虏体富集大离子亲石元素(LILE),如Rb、Ba、Sr。高度亏损高场强元素(HFSE),如Nb、Ta、Ti。εNd(t)=4.36~5.28。表明在新元古代时期,六合地区的地壳受到俯冲弧岩浆底侵,经过批式熔融计算得知底侵岩浆源自地幔石榴石-尖晶石橄榄岩10%~30%部分熔融。晚二叠世捕虏体富集大离子亲石元素(LILE),如Rb、Ba、Sr。轻度亏损高场强元素(HFSE),如Nb、Ta、Ti。εNd(t)=-5.68~2.33。表明在晚二叠世时期,六合地区的地壳受到地幔柱-岩石圈地幔相互作用产生的岩浆底侵,经过批式熔融计算得知底侵岩浆由地幔石榴石-尖晶石橄榄岩10%~20%部分熔融而成。综上所述,在新元古代板块俯冲和晚二叠世地幔柱的分别作用下,六合地区的地壳受到地幔物质的加入形成镁铁质的新生下地壳。  相似文献   
52.
冈底斯岩浆岩带位于西藏南部的拉萨地体南缘,它形成于特提斯洋和印度-亚洲大陆长期俯冲碰撞过程中,是青藏高原花岗岩最发育的地区。前人对冈底斯岩浆带中各类型花岗岩的成因、源区、时空分布以及其地球动力学意义进行了详细大量的研究,但是对高分异花岗岩的具体成因、演化过程以及在70~65Ma拉萨地块的地球动力学演化过程研究较少。本文选择冈底斯南缘白垩纪末桑日花岗岩进行研究,揭示了桑日花岗岩的岩石学特征、锆石U-Pb年龄、锆石Hf同位素特征和地球化学特征。本文样品LA-ICP-MS测得的锆石U-Pb年龄为67~66Ma。桑日花岗岩属于高钾钙碱性系列,具有高Si O2(74.26%~76.93%)、高K2O+Na2O(7.87%~8.56%),低P2O5(0.02%~0.04%)和Ca O(0.28%~1.00%),以及富集K、Rb、Th,亏损Nb、P、Ti的高分异I型花岗岩的特征。在锆石Hf同位素上,桑日花岗岩εHf(t)0(+4.6~+10.9),且具有Hf不均一的特征。结合前人研究,本文认为桑日花岗岩是高分异I型花岗岩,在特提斯洋板块北向俯冲过程中,板片回转,俯冲洋壳脱水产生的流体进入地幔楔,引发地幔楔发生部分熔融产生镁铁质幔源物质并底侵上涌,导致浅部地壳发生部分熔融,并与幔源岩浆混合,从而在浅部形成混源岩浆房,最终在侵位与成岩后期经历高程度的分异演化形成的。  相似文献   
53.
大气混合层高度的模式计算和分析   总被引:3,自引:1,他引:2  
曾智华 《高原气象》2004,23(3):368-373
设计了一套描述混合对流层平均状况的平板模式.模拟了混合层平均要素随时间的演变过程。采用能量学方法,通过考虑影响混合层演变的浮力、风切变及下沉等因子,对混合层高度随时间变化的过程进行数值模拟计算,并与实际观测资料比较。结果表明.模式可以较好地应用于实际业务预报中,同时改进了模式的计算方法.分析了各种物理参数对混合层高度变化的不同影响和物理成因。  相似文献   
54.
青藏高原南拉萨地体晚白垩世岩浆岩是揭示新特提斯洋北向俯冲动力学过程的重要岩浆记录。前人对东西向展布的冈底斯岩基不同区段出露的各类晚白垩世岩浆岩进行了大量研究,但对该时期岩石成因和新特提斯俯冲的深部过程仍存在一些争议。本文报道的冈底斯岩基南缘南木林地区的辉长岩体及侵入其中的基性和酸性脉岩,形成于晚白垩世早期,在辉长岩体(92~94Ma)就位后不久基性和酸性脉岩(91Ma)同时侵入,野外露头较好地展示了它们的穿切关系。寄主辉长岩和基性脉岩均属于高钾钙碱性系列,Si O_2含量不均一(49.60%~57.99%),高铝(Al_2O_3,16.41%~18.67%),无明显Eu负异常,低Cr、Ni,表明可能经历过角闪石分离结晶。酸性脉岩属于弱过铝质钾玄质系列,普遍高硅(Si O_270%)、高全碱(8.06%~9.44%),与岩体无成分演化关系。三类岩石的微量元素均显示弧岩浆的特征,表现为轻稀土富集、重稀土亏损,Th、U、K、Pb、Sr等大离子亲石元素相对富集,高场强元素Nb、Ta、Ti等相对亏损。辉长岩和酸性脉岩锆石Hf同位素均表现亏损特征(ε_(Hf)(t)为+7.8~+11.4),一阶段模式年龄和地壳模式年龄均低于506Ma。综合辉长岩和基性脉岩的Nb/La、Nb/U和Ce/Pb特征,表明岩浆应来源于受流体交代的弧下地幔楔源区,而酸性岩脉具有高Sr/Y比和(La/Yb)_N比的埃达克质特征,可能来自弧下加厚的新生镁铁质下地壳。考虑到区域上95~85Ma岩浆活动广泛分布于整个冈底斯岩基中,本文认为在冈底斯岩浆弧的中段,晚白垩世早期北向俯冲的新特提斯洋发生了板片回转,同时导致了地幔和下地壳的部分熔融作用。  相似文献   
55.
造山带岩石圈去根作用作为碰撞后或造山后阶段构造-岩浆活动的重要机制,是研究造山带大地构造演化不可或缺的环节。近年来通过地震层析成像技术获得的一系列成果表明俯冲板片发生断离/拆离作用残留在对流地幔中,表现为高导低阻而冷的高速体;这些被断离/拆离的板片直接记录了造山带巨厚岩石圈去根作用。板片断离/拆离作用导致岩石圈深部伸展-减薄作用和热的软流圈地幔上隆,从而引起强烈的交代岩石圈地幔部分熔融作用和断陷盆地的形成。  相似文献   
56.
Silurian plutonic suites in the Newfoundland Appalachians include abundant gabbro, monzogabbro and granite to granodiorite and lesser quartz diorite and tonalite. Most are medium- to high-K, but included are some low-K and shoshonitic mafic compositions. Felsic rocks are of both alkaline (A-type or within-plate granite (WPG)) and calc-alkaline volcanic arc granite (VAG) affinity. Mafic rocks include both arc-like (Nb/Th < 3) calc-alkaline and non-arc-like (Nb/Th > 3) transitional calc-alkaline basalt to continental tholeiitic affinity compositions. εNd(T) values range from − 9.6 to + 5.4 and δ18O (VSMOW) values range from + 3.1 to + 13.2‰.

A rapid progression from exclusively arc-type to non-arc-like mafic and then contemporaneous WPG plus VAG magmatism has been documented using precise U–Pb zircon dating. Earlier arc-like plutonism indicates subduction, while asthenosphere-derived mafic magmas support slab break-off, due to subduction of a young, warm back-arc basin. Contemporaneous mafic magmas with arc and non-arc geochemical signatures may reflect tapping of asthenospheric and subcontinental lithospheric mantle (SCLM) sources and/or contamination of asthenosphere-derived magmas by SCLM or crust.

The brevity (< 5 Ma) of the mafic magmatic pulse agrees with the transient nature of magmatism associated with slab break-off. The subsequent ca. 1 to 2 m.y. period of voluminous WPG and VAG plutonism likely reflects mafic magma-driven partial melting of both SCLM and crustal sources, respectively. Continuation of VAG-like magmatism for an additional 2 to 5 m.y. may reflect lower solidus temperatures of crustal materials, enabling anatexis to continue after mantle melting ceased. East to west spatial variation of εNd and (La/Yb)CN in Silurian plutons suggests a transition from shallow melting of juvenile sources proximal to the collision zone to deeper melting of old source materials in the garnet-stability field further inboard.

Previous work has demonstrated that geochemical discriminaton of post-collisional granitoid magmatism (PCGM) is difficult in the absence of other constraints. Our example should contribute to the understanding and identification of PCGM if it can be employed as a ‘fingerprint’ for slab break-off-related PCGM within the Paleozoic geological record.  相似文献   

57.
In the Lachlan Fold Belt of southeastern Australia, major orogenic gold and porphyry gold–copper deposits formed simultaneously within distinct tectonic settings during a very short time interval at ca. 440 Ma. The driving mechanism that controlled the temporal coincidence of these deposits remains largely unexplained. A review of contemporaneous metallogenic, tectonic, magmatic and sedimentological events in central and eastern Australia reveals that a change in subduction dynamics along the Australian sector of the Early Palaeozoic circum–Gondwana mega-subduction system could have influenced lithospheric stress conditions far inboard of the subduction margin. The magnitude of ore formation and the spatial extent of related events are proposed in this paper to have been controlled by the interplay of mantle processes and lithospheric changes that followed slab break-off along a portion of the mega-subduction system surrounding Gondwana at that time. Slab break-off after subduction lock-up caused mantle upwelling that, in turn, provided an instantaneous heat supply for magmatic and hydrothermal events. Coincident reorganisation of lithospheric stress conditions far inboard of the proto-Pacific margin of Australia controlled reactivation of deep-lithospheric fault structures. These fault systems provided a pathway for fluids and heat fuelled by mantle upwelling into the upper lithosphere and caused the deposition of ~440 Ma gold deposits in the Lachlan Fold Belt, as well as a range of metallogenic, tectonic and sedimentary changes elsewhere in central and eastern Australia.  相似文献   
58.
Neotethyan suprasubduction zone ophiolites represent anomalous oceanic crust developed in older host basins during trench rollback cycles and later entrapped in orogenic belts as a result first of trench-passive margin and then continent–continent collisions. The Middle Jurassic Mirdita zone ophiolites in northern Albania constitute a critical transition between the dominantly mid-ocean ridge basalt (MORB)-related Early Jurassic Alpine–Apennine ophiolites in the west and supra-subduction zone (SSZ)-generated Cretaceous Eastern Mediterranean ophiolites in the east. The previously recognized Western- and Eastern-type ophiolites in the Mirdita zone display significant differences in their internal structure and pseudostratigraphy, but their geochemical affinities are more gradational in contrast to the earlier claims that these ophiolites may have formed in different tectonic settings at different times. Crosscutting relations of dike intrusions in the Eastern-type ophiolites indicate changes in the chemistry of magmatic plumbing systems from basaltic to andesitic, dacitic, rhyodacitic, and boninitic compositions through time and from west to east. The chemostratigraphy of the extrusive sequence in the Western-type ophiolites shows that the MORB-like tholeiitic rocks display a significant decrease in their TiO2 contents and Zr concentrations stratigraphically upward, although their εNd(T) values (+ 7.3 to + 6.9) show minor variation. The basaltic andesites in the upper 100 m of the Western extrusive sequence have island arc tholeiite (IAT)-like chemical characteristics (low-Ti, lower HFSE and HREE distribution, significant LREE depletion and higher Co, Ni, and Cr contents) that signify increased subduction influence in magma/melt evolution. The Eastern-type extrusive rocks range in composition from basaltic andesite to andesite, dacite and rhyodacite stratigraphically upward mimicking the temporal changes in the sheeted dikes, and they display constant Zr ( 50 ppm) but significantly varying Cr contents. The TiO2 contents of their pyroxenes are < 0.3 wt.%, and their εNd(T) values decrease from + 6.5 in the lower parts to  + 3.1 in the uppermost section of the sequence. Farther east in the extrusive sequence the youngest boninitic lavas and dikes have εNd(T) values between − 1.4 and − 4.0. These chemical variations through time point to a mantle source increasingly contaminated by subduction-derived aqueous fluids and sediments, which were incorporated into the melt column beneath an extending protoarc–forearc region. Slab retreat and sinking played a major role in establishing asthenospheric upwelling and corner flow beneath the forearc mantle that in turn facilitated shallow partial melting of highly depleted harzburgitic peridotites, producing boninitic magmas. This chemical progression in the Mirdita zone ophiolite volcanism is similar to the temporal variations in magma chemistry documented from very young intraoceanic arcs built on recently generated backarc crust (i.e., South Sandwich arc). The Western and Eastern-type ophiolites in the Mirdita zone are therefore all subduction-related with the subduction zone influence in the lavas increasing stratigraphically upward as well as eastwards, suggesting a west-dipping slab geometry. The Mirdita zone and the Western Hellenic ophiolites in the Balkans were produced within a marginal basin that had evolved between the Apulian and Pelagonian microcontinents, and were subsequently emplaced onto their passive margins diachronously through different collisional processes.  相似文献   
59.
林伟  李金雁 《岩石学报》2021,37(8):2303-2323
以变质核杂岩或伸展穹隆为代表的晚中生代伸展构造在欧亚大陆东部广泛发育。与北美西部的科迪勒拉型变质核杂岩既相似,又存在很大的不同。区域上可以进一步划分为次一级的伸展构造带,由北向南依次为泛贝加尔-蒙古-鄂霍茨克带、华北西部带、华北东部带、华北南缘及秦岭-大别带及华南中部带。与北美地区显著不同的是它们并非平行于俯冲带展布,而是呈面状分布于太平洋西部广大的地区,不仅发育在岩石圈薄弱带或造山带相关的构造单元之上,而且还发育在稳定的"克拉通"之上。这些穹隆构造记录了NW-SE向的区域伸展方向,构成了全球最大的伸展构造发育区。通过对各带伸展穹隆的结构样式、时空分布和发育过程的系统分析、归纳和总结,我们将这些伸展穹隆分为早晚两期。两期伸展构造所具有的不同特点决定了他们的动力学机制的不同。早期伸展构造发生在早白垩世早期,其具有"对称性"、"等时性"和"等深性"的特点,决定了其动力学机制以"沉坠"作用(foundering)为主导,是对华北克拉通破坏的峰期响应。晚期伸展构造形成时间为早白垩世晚期-晚白垩世早期,时空分布上具有向S或SW迁移的规律,或指示了古太平洋板块的俯冲回撤(roll-back)过程对欧亚大陆板块的渐次影响。  相似文献   
60.
藏南冈底斯岩基晚白垩世早期岩浆岩保存了有关新特提斯洋的俯冲演化过程和大陆地壳生长的重要信息。本文对朗县杂岩中出露的晚白垩世早期中酸性岩(岩脉)开展了全岩元素地球化学、锆石U-Pb地质年代学、同位素(Sr、Nd和Hf)组成的研究。闪长岩和花岗闪长岩年龄为92.4~86.9Ma,花岗岩(脉)年龄为91.9~88.6Ma,均为晚白垩世早期岩浆作用的产物。闪长岩和花岗闪长岩具有高钾钙碱性偏铝质特征,具有较高的锆石Hf(εHft)=+8.3~+13.2,平均值+10.9)和全岩Nd(εNdt)=+3.2~+2.7)同位素组成,为受俯冲板片流体和大洋沉积物熔体共同交代的地幔楔部分熔融形成,闪长岩岩浆源区形成深度较浅且受板片流体的交代程度较高,花岗闪长岩岩浆源区更深,受沉积物熔体交代程度较高。花岗岩(脉)在主量元素、稀土元素和微量元素组成上显示明显差异,可划分为两类,第一类花岗岩属于低钾钙碱性系列,Na2O/K2O>3.0,稀土总量较高,具有明显的Eu负异常,Sr/Y低(<7.2)。在主量元素组成上,该类花岗岩与闪长岩和花岗闪长岩形成较好的线性演化关系,表明它们可能是上述中酸性岩浆演化的产物。第二类花岗岩属于高钾钙碱性系列,Na2O/K2O较低(均<1.0),铝饱和指数较高(A/CNK=1.01~1.02),发育角闪石,稀土总量较低,具有微弱负或无Eu异常(Eu/Eu*=0.88~1.12),Sr/Y比值(33.8~55.4)较高,锆石Hf(εHft)=+4.1~+10.8)和全岩Nd(εNdt)=+0.8)同位素组成都较低,为新生下地壳部分熔融形成。结合冈底斯岩基晚白垩世早期(100~87Ma)岩浆岩已有的研究结果,认为新特提斯洋板片自早白垩世以高角度俯冲,在晚白垩世早期俯冲板片发生回撤,导致软流圈物质上涌增强,诱发熔流体交代过的地幔楔较高程度的部分熔融形成镁铁质岩浆。这些镁铁质岩浆上升侵位到下地壳,发生不同程度的分离结晶作用并诱发新生下地壳部分熔融,形成晚白垩世岩石地球化学性质各异的岩浆岩。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号