首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   390篇
  免费   88篇
  国内免费   123篇
测绘学   18篇
大气科学   2篇
地球物理   154篇
地质学   373篇
海洋学   17篇
天文学   4篇
综合类   18篇
自然地理   15篇
  2024年   2篇
  2023年   7篇
  2022年   9篇
  2021年   12篇
  2020年   18篇
  2019年   16篇
  2018年   22篇
  2017年   10篇
  2016年   15篇
  2015年   19篇
  2014年   26篇
  2013年   23篇
  2012年   18篇
  2011年   21篇
  2010年   11篇
  2009年   31篇
  2008年   26篇
  2007年   20篇
  2006年   23篇
  2005年   18篇
  2004年   30篇
  2003年   23篇
  2002年   26篇
  2001年   19篇
  2000年   13篇
  1999年   8篇
  1998年   13篇
  1997年   10篇
  1996年   14篇
  1995年   15篇
  1994年   23篇
  1993年   19篇
  1992年   11篇
  1991年   4篇
  1990年   2篇
  1989年   3篇
  1988年   5篇
  1987年   2篇
  1986年   2篇
  1985年   3篇
  1983年   2篇
  1979年   2篇
  1978年   3篇
  1977年   2篇
排序方式: 共有601条查询结果,搜索用时 15 毫秒
11.
华北板块南缘栾川群研究   总被引:7,自引:0,他引:7  
栾川群出露于东秦岭北部。在栾川群分布区域,古华北板块不同时代的地层往南逆冲,构成北秦岭的太华推覆体。栾川群存在于该推覆体内部的特定逆冲岩席之中,沿这一逆冲岩席追索,确定古华北板块南缘的栾川群是连续沉积的,而受后期推覆构造的改造,栾川群在推覆体前缘的分布是断续相连的。根据地层之间的接触关系、岩浆活动、沉积作用的研究,对栾川群的划分提出了新的看法,认为栾川群由三川组、南泥湖组、煤窑沟组及大红口组构成。栾川群形成于震旦纪晚期,由湖坪及潮下斜坡等滨浅海沉积物构成。栾川群的岩浆岩为具双众数特征的岩套,具典型的大陆裂谷岩浆岩特征。并认为中元古代以来,古华北板块南缘处于裂陷拉张环境。早期的裂陷形成了熊耳群、汝阳群、官道口群及竞坪群,晚期裂陷的过程形成了栾川群、陶湾群,其进一步发育导致以二郎坪群为代表的洋壳生成。  相似文献   
12.
The northern part of the western Kunlun (southern margin of the Tarim basin) represents a Sinian rifted margin. To the south of this margin, the Sinian to Paleozoic Proto-Tethys Ocean formed. South-directed subduction of this ocean, beneath the continental southern Kunlun block during the Paleozoic, resulted in the collision between the northern and southern Kunlun blocks during the Devonian. The northern part of the Paleo-Tethys Ocean, located to the south of the southern Kunlun, was subducted to the north beneath the southern Kunlun during the Late Paleozoic to Early Mesozoic. This caused the formation of a subduction-accretion complex, including a sizeable accretionary wedge to the south of the southern Kunlun. A microcontinent (or oceanic plateau?), which we refer to as “Uygur terrane,” collided with the subduction complex during the Late Triassic. Both elements together represent the Kara-Kunlun. Final closure of the Paleo-Tethys Ocean took place during the Early Jurassic when the next southerly located continental block collided with the Kara-Kunlun area. From at least the Late Paleozoic to the Early Jurassic, the Tarim basin must be considered a back-arc region. The Kengxiwar lineament, which “connects” the Karakorum fault in the west and the Ruogiang-Xingxingxia/Altyn-Tagh fault zone in the east, shows signs of a polyphase strike-slip fault along which dextral and sinistral shearing occurred.  相似文献   
13.
吉林-日本区深震特征及板块俯冲图像分析   总被引:2,自引:0,他引:2  
根据USCS地震资料:分析了吉林-日本深震区地震的深度特征.结果表明:吉林-日本深震区地震位于太平洋板块与欧亚大陆板块的交界带上.其北支地震活动强于南支.同时也揭示了该区地震深度、地震频次以及地震能量之间的关系.指出其最容易发生强震的地震层位在570-580km左右。由深度资料推断板块间的作用方式,太平洋板块向欧亚大陆的挤压是一个由浅入深的过程,在不同的部位其俯冲角度与俯冲距离是不一样的,一般来说,倾角越大,俯冲越陡.水平延伸距离越短;反之,倾角越小.俯冲越平缓,水平延伸距离越长。  相似文献   
14.
晚太古代Sanukite(赞岐岩)与地球早期演化   总被引:9,自引:12,他引:9  
Shirey and Hanson(1984)将某些太古代的高镁闪长岩套称为sanukite(赞岐岩),类似于日本中新世(11~15Ma)Setouchi火山岩带的高镁安山岩。Sanukitoids由闪长岩-二长闪长岩-花岗闪长岩组成,不同于TTC岩套(奥长花岗岩-英云闪长岩-花岗闪长岩)。Sanukitoids具有下列地球化学特征:富Mg,Mg~#>0.60,Ni和Cr>100μg/g,Sr和Ba>500μg/g,LREE富集(大于球粒陨石100倍),无Eu异常。高镁安山岩在太古代很少见,而其相应的侵入岩高镁闪长岩或sanukitoids,虽然数量也很少,但却是各地晚太古代地体中随处可见的。Sanukitoids的原始岩浆是交代的地幔楔部分熔融形成的,随后可能经历了广泛的分离结晶作用。TTC和sanukitoids岩套可以相伴产出,二者均与板片熔融有关,TTG与其直接有关,sanukitoids可能与其间接有关。全球Sanukitoids主要集中在晚太古代时期,可能暗示板块的消减作用在~3.0Ga以后才起了重要的作用。  相似文献   
15.
Andrei I. Kozhurin   《Tectonophysics》2004,380(3-4):273-285
The active faults known and inferred in the area where the major Pacific, North American and Eurasian plates come together group into two belts. One of them comprises the faults striking roughly parallel to the Pacific ocean margin. The extreme members of the belt are the longitudinal faults of islands arcs, in its oceanic flank, and the faults along the continental margins of marginal seas, in its continental flank. The available data show that all these faults move with some strike-slip component, which is always right-lateral. We suggest that characteristic right-lateral, either partially or dominantly, kinematics of the fault movements has its source in oblique convergence of the Pacific plate with continental Eurasian and North American plates. The second belt of active faults transverses the extreme northeast Asia as a continental extension of the active mid-Arctic spreading ridge. The two active fault belts do not cross but come close to each other at the northern margin of the Sea of Okhotsk marking thus the point where the Pacific, North American and Eurasian plates meet.  相似文献   
16.
17.
Creation of the Cocos and Nazca plates by fission of the Farallon plate   总被引:4,自引:0,他引:4  
Peter Lonsdale   《Tectonophysics》2005,404(3-4):237-264
Throughout the Early Tertiary the area of the Farallon oceanic plate was episodically diminished by detachment of large and small northern regions, which became independently moving plates and microplates. The nature and history of Farallon plate fragmentation has been inferred mainly from structural patterns on the western, Pacific-plate flank of the East Pacific Rise, because the fragmented eastern flank has been subducted. The final episode of plate fragmentation occurred at the beginning of the Miocene, when the Cocos plate was split off, leaving the much reduced Farallon plate to be renamed the Nazca plate, and initiating Cocos–Nazca spreading. Some Oligocene Farallon plate with rifted margins that are a direct record of this plate-splitting event has survived in the eastern tropical Pacific, most extensively off northern Peru and Ecuador. Small remnants of the conjugate northern rifted margin are exposed off Costa Rica, and perhaps south of Panama. Marine geophysical profiles (bathymetric, magnetic and seismic reflection) and multibeam sonar swaths across these rifted oceanic margins, combined with surveys of 30–20 Ma crust on the western rise-flank, indicate that (i) Localized lithospheric rupture to create a new plate boundary was preceded by plate stretching and fracturing in a belt several hundred km wide. Fissural volcanism along some of these fractures built volcanic ridges (e.g., Alvarado and Sarmiento Ridges) that are 1–2 km high and parallel to “absolute” Farallon plate motion; they closely resemble fissural ridges described from the young western flank of the present Pacific–Nazca rise. (ii) For 1–2 m.y. prior to final rupture of the Farallon plate, perhaps coinciding with the period of lithospheric stretching, the entire plate changed direction to a more easterly (“Nazca-like”) course; after the split the northern (Cocos) part reverted to a northeasterly absolute motion. (iii) The plate-splitting fracture that became the site of initial Cocos–Nazca spreading was a linear feature that, at least through the 680 km of ruptured Oligocene lithosphere known to have avoided subduction, did not follow any pre-existing feature on the Farallon plate, e.g., a “fracture zone” trail of a transform fault. (iv) The margins of surviving parts of the plate-splitting fracture have narrow shoulders raised by uplift of unloaded footwalls, and partially buried by fissural volcanism. (v) Cocos–Nazca spreading began at 23 Ma; reports of older Cocos–Nazca crust in the eastern Panama Basin were based on misidentified magnetic anomalies.There is increased evidence that the driving force for the 23 Ma fission of the Farallon plate was the divergence of slab-pull stresses at the Middle America and South America subduction zones. The timing and location of the split may have been influenced by (i) the increasingly divergent northeast slab pull at the Middle America subduction zone, which lengthened and reoriented because of motion between the North America and Caribbean plates; (ii) the slightly earlier detachment of a northern part of the plate that had been entering the California subduction zone, contributing a less divergent plate-driving stress; and (iii) weakening of older parts of the plate by the Galapagos hotspot, which had come to underlie the equatorial region, midway between the risecrest and the two subduction zones, by the Late Oligocene.  相似文献   
18.
辽中凹陷发育多种样式的反转构造,其形成演化与郯庐断裂带辽东湾段新生代的脉动式活动有直接关系。通过最新的地震剖面、相干体切片等资料以及平衡剖面恢复等方法,对辽中凹陷反转构造的几何学形态、演化过程和反转期次进行研究,并结合区域板块活动背景,分析反转构造演化过程及其对郯庐断裂带新生代活动的响应。结果表明:辽中凹陷发育反转断裂、反转背斜、泥底辟、隐伏凸起等多种类型的反转构造,且沿郯庐断裂带呈带状展布。辽中凹陷在新生代主要曾经历了三期构造反转,分别发生在沙三段沉积末期、东营组沉积末期和明化镇组沉积末期。三期构造反转均与郯庐断裂带的走滑压扭活动有关,从根本上受控于周边板块活动背景的变化:第一期反转是由于太平洋板块俯冲方向和速率发生变化,导致郯庐断裂带由左旋走滑转为右旋走滑,由走滑张扭转为走滑压扭,形成反转构造的雏形;第二期反转的动力主要来源于太平洋板块对中国大陆向西的推挤作用,导致渤海湾地区受到整体挤压以及郯庐断裂带发生走滑压扭,使反转构造定型;第三期反转是由于太平洋板块的加速俯冲促使郯庐断裂带晚期再次发生走滑压扭活动,对早期反转构造进行改造。其中沙三段和明化镇组沉积末期的反转为局部反转,强度较弱,东营组沉积末期的反转为区域反转,强度最高。  相似文献   
19.
Volcanism along the northwest boundary of the Arabian Plate found in the Gaziantep Basin, southeast Turkey, is of Miocene age and is of alkaline and calc-alkaline basic composition. The rare earth element data for both compositional series indicates spinel–peridotite source areas. The rare earth and trace elements of the alkaline lavas originate from a highly primitive and slightly contaminated asthenospheric mantle; those of the calc-alkaline lavas originate from a highly heterogeneous, asthenospheric, and lithospheric mantle source. Partial melting and magmatic differentiation processes played a role in the formation of the petrological features of these volcanics. These rocks form two groups on the basis of their ~(87) Sr/~(86) Sr and ~(143) Nd/~(144) Nd isotopic compositions in addition to their classifications based on their chemical compositions(alkaline and calc-alkaline). These isotopic differences indicate a dissimilar parental magma. Therefore, high Nd isotope samples imply a previously formed and highly primitive mantle whereas low Nd isotope samples may indicate comparable partial melting of an enriched heterogeneous shallow mantle. Other isotopic changes that do not conform to the chemical features of these lavas are partly related to the various tectonic events of the region, such as the Dead Sea Fault System and the Bitlis Suture Zone.  相似文献   
20.
阿留申俯冲带位于环太平洋俯冲带最北端,是东太平洋型俯冲和西太平洋俯冲的过渡区域。该俯冲带火山岛弧距离海沟的距离从东向西逐渐增大,而形成地球上独特的岛弧火山链与海沟V字型斜交的现象。这一现象的运动学成因目前并没有统一的认识。本文通过对阿留申俯冲带几何形态数据、运动学数据进行整理分析,尝试运用构造赤道理论探讨该现象形成的运动学背景。阿留申俯冲带的几何学数据表明:从俯冲带东段(175°E)至俯冲带西段(155°W),火山岛弧距俯冲海沟的距离从80 km增加至250 km。与此同时,俯冲板片的倾角由60°减小至30°。板块的运动学分析表明:相对北美板块,太平洋板块的东段的运动矢量为48 mm/a,向北运动;逐渐转变为西段的78mm/a,向西北方向运动。相对于软流圈,太平洋板块的运动方向没有改变,始终向西北方向运动,速率向西逐渐增加。因此,在俯冲带的东段太平洋板块的绝对运动方向和相对运动方向存在30°左右的夹角,而这个夹角在西段几乎不存在。太平洋板块的绝对运动方向和相对运动方向之间的夹角不同,会导致软流圈对俯冲板片的反作用力差异,从而形成不同的俯冲角度和俯冲带宽度。太平洋板块相对北美板块和相对地幔的速度方向夹角的变化被认为是引起阿留申火山弧与海沟"V"字型斜交的运动学成因。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号