首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1567篇
  免费   189篇
  国内免费   452篇
地球物理   112篇
地质学   1986篇
海洋学   19篇
天文学   3篇
综合类   53篇
自然地理   35篇
  2024年   8篇
  2023年   14篇
  2022年   23篇
  2021年   34篇
  2020年   33篇
  2019年   56篇
  2018年   54篇
  2017年   57篇
  2016年   59篇
  2015年   53篇
  2014年   40篇
  2013年   115篇
  2012年   79篇
  2011年   76篇
  2010年   56篇
  2009年   80篇
  2008年   73篇
  2007年   99篇
  2006年   107篇
  2005年   83篇
  2004年   83篇
  2003年   78篇
  2002年   70篇
  2001年   66篇
  2000年   71篇
  1999年   76篇
  1998年   64篇
  1997年   62篇
  1996年   66篇
  1995年   72篇
  1994年   61篇
  1993年   61篇
  1992年   36篇
  1991年   26篇
  1990年   24篇
  1989年   28篇
  1988年   15篇
  1987年   12篇
  1986年   13篇
  1985年   7篇
  1984年   6篇
  1983年   9篇
  1981年   3篇
排序方式: 共有2208条查询结果,搜索用时 31 毫秒
31.
Preservation/exhumation of ultrahigh-pressure subduction complexes   总被引:14,自引:0,他引:14  
W.G. Ernst   《Lithos》2006,92(3-4):321-335
Ultrahigh-pressure (UHP) metamorphic terranes reflect subduction of continental crust to depths of 90–140 km in Phanerozoic contractional orogens. Rocks are intensely overprinted by lower pressure mineral assemblages; traces of relict UHP phases are preserved only under kinetically inhibiting circumstances. Most UHP complexes present in the upper crust are thin, imbricate sheets consisting chiefly of felsic units ± serpentinites; dense mafic and peridotitic rocks make up less than  10% of each exhumed subduction complex. Roundtrip prograde–retrograde PT paths are completed in 10–20 Myr, and rates of ascent to mid-crustal levels approximate descent velocities. Late-stage domical uplifts typify many UHP complexes.

Sialic crust may be deeply subducted, reflecting profound underflow of an oceanic plate prior to collisional suturing. Exhumation involves decompression through the PT stability fields of lower pressure metamorphic facies. Scattered UHP relics are retained in strong, refractory, watertight host minerals (e.g., zircon, pyroxene, garnet) typified by low rates of intracrystalline diffusion. Isolation of such inclusions from the recrystallizing rock matrix impedes back reaction. Thin-aspect ratio, ductile-deformed nappes are formed in the subduction zone; heat is conducted away from UHP complexes as they rise along the subduction channel. The low aggregate density of continental crust is much less than that of the mantle it displaces during underflow; its rapid ascent to mid-crustal levels is driven by buoyancy. Return to shallow levels does not require removal of the overlying mantle wedge. Late-stage underplating, structural contraction, tectonic aneurysms and/or plate shallowing convey mid-crustal UHP décollements surfaceward in domical uplifts where they are exposed by erosion. Unless these situations are mutually satisfied, UHP complexes are completely transformed to low-pressure assemblages, obliterating all evidence of profound subduction.  相似文献   

32.
T. Kawakami  D.J. Ellis  A.G. Christy 《Lithos》2006,92(3-4):431-446
The high-temperature (HT) to ultrahigh-temperature (UHT) metamorphic rocks from Lützow–Holm Complex, East Antarctica show a systematic difference between sulfide assemblages in the rock matrix and those found as inclusions in the silicates stable in high-temperatures. Matrix sulfides are commonly pyrite with or without pentlandite and chalcopyrite. On the other hand, inclusion sulfides are pyrrhotite with or without pentlandite and chalcopyrite lamellae. When recalculated into integrated single-phase sulfide compositions, inclusion sulfides from the UHT region showed a wider range of solid–solution composition than the inclusion sulfides from the HT region. The host minerals of the sulfides with extreme solid–solution compositions are those stable at the peak of metamorphism such as orthopyroxene and garnet. One of the most extreme ones is included in orthopyroxene coexisting with sillimanite ± quartz, which is the diagnostic mineral assemblage of UHT metamorphism. These observations suggest that sulfide inclusions preserve their peak metamorphic compositions. Pyrrhotite did not revert to pyrite because of the closed system behavior of sulfur in inclusion sulfides. On the other hand, in the rock matrix where the open system behavior of sulfur is permitted, original sulfides were partly to completely altered by the later fluid activity.  相似文献   
33.
K. Sajeev  M. Santosh  H.S. Kim 《Lithos》2006,92(3-4):465-483
The Kodaikanal region of the Madurai Block in southern India exposes a segment of high-grade metamorphic rocks dominated by an aluminous garnet–cordierite–spinel–sillimanite–quartz migmatite suite, designated herein as the Kodaikanal Metapelite Belt (KMB). These rocks were subjected to extreme crustal metamorphism during the Late Neoproterozoic despite the lack of diagnostic ultrahigh-temperature assemblages. The rocks preserve microstructural evidence demonstrating initial-heating, dehydration melting to generate the peak metamorphic assemblage and later retrogression of the residual assemblages with remaining melt. The peak metamorphic assemblage is interpreted to be garnet + sillimanite + K-feldspar + spinel + Fe–Ti oxide + quartz + melt, which indicates pressure–temperature (P–T) conditions around 950–1000 °C and 7–8 kbar based on calculated phase diagrams. A clockwise P–T path is proposed by integrating microstructural information with pseudosections. We show that evidence for extreme crustal metamorphism at ultrahigh-temperature conditions can be extracted even in the cases where the rocks lack diagnostic ultrahigh-temperature mineral assemblages. Our approach confirms the widespread regional occurrence of UHT metamorphism in the Madurai Block during Gondwana assembly and point out the need for similar studies on adjacent continental fragments.  相似文献   
34.
Toshiaki Tsunogae  M. Santosh 《Lithos》2006,92(3-4):524-536
We report here a multiphase mineral inclusion composed of quartz, plagioclase, K-feldspar, sapphirine, spinel, orthopyroxene, and biotite, in porphyroblastic garnet within a pelitic granulite from Rajapalaiyam in the Madurai Granulite Block, southern India. In this unique textural association, hitherto unreported in previous studies, sapphirine shows four occurrences: (1) as anhedral mineral between spinel and quartz (Spr-1), (2) subhedral to euhedral needles mantled by quartz (Spr-2), (3) subhedral to anhedral mineral in orthopyroxene, and (4) isolated inclusion with quartz (Spr-4). Spr-1, Spr-2, and Spr-4 show direct grain contact with quartz, providing evidence for ultrahigh-temperature (UHT) metamorphism at temperatures exceeding 1000 °C. Associated orthopyroxene shows high Mg/(Fe + Mg) ratio ( 0.75) and Al2O3 content (up to 9.6 wt.%), also suggesting T > 1050 °C and P > 10 kbar during peak metamorphism.

Coarse spinel (Spl-1) with irregular grain morphology and adjacent quartz grains are separated by thin films of Spr-1 and K-feldspar, suggesting that Spl-1 and quartz were in equilibrium before the stability of Spr-1 + quartz. This texture implies that the P–T conditions of the rock shifted from the stability field of spinel + quartz to sapphirine + quartz. Petrogenetic grid considerations based on available data from the FMAS system favour exhumation along a counterclockwise P–T trajectory. The irregular shape of the inclusion and chemistry of the inclusion minerals are markedly different from the matrix phases suggesting the possibility that the inclusion minerals could have equilibrated from cordierite-bearing silicate-melt pockets during the garnet growth at extreme UHT conditions.  相似文献   

35.
The Chinese Continental Scientific Drilling (CCSD) main drill hole (0–3000 m) in Donghai, southern Sulu orogen, consists of eclogite, paragneiss, orthogneiss, schist and garnet peridotite. Detailed investigations of Raman, cathodoluminescence, and microprobe analyses show that zircons from most eclogites, gneisses and schists have oscillatory zoned magmatic cores with low-pressure mineral inclusions of Qtz, Pl, Kf and Ap, and a metamorphic rim with relatively uniform luminescence and eclogite-facies mineral inclusions of Grt, Omp, Phn, Coe and Rt. The chemical compositions of the UHP metamorphic mineral inclusions in zircon are similar to those from the matrix of the host rocks. Similar UHP metamorphic PT conditions of about 770 °C and 32 kbar were estimated from coexisting minerals in zircon and in the matrix. These observations suggest that all investigated lithologies experienced a joint in situ UHP metamorphism during continental deep subduction. In rare cases, magmatic cores of zircon contain coesite and omphacite inclusions and show patchy and irregular luminescence, implying that the cores have been largely altered possibly by fluid–mineral interaction during UHP metamorphism.

Abundant H2O–CO2, H2O- or CO2-dominated fluid inclusions with low to medium salinities occur isolated or clustered in the magmatic cores of some zircons, coexisting with low-P mineral inclusions. These fluid inclusions should have been trapped during magmatic crystallization and thus as primary. Only few H2O- and/or CO2-dominated fluid inclusions were found to occur together with UHP mineral inclusions in zircons of metamorphic origin, indicating that UHP metamorphism occurred under relatively dry conditions. The diversity in fluid inclusion populations in UHP rocks from different depths suggests a closed fluid system, without large-scale fluid migration during subduction and exhumation.  相似文献   

36.
37.
The geologic origin of subhorizontal reflections, often observed in crustal seismic sections, was investigated by establishing metamorphic facies and strength of rocks in depth, and correlating these properties to seismic reflection sections from eastern Hungary. Estimation of the depths of metamorphic mineral stability zones utilized the principles developed by Fyfe et al. and known geothermal data of the area. The strength versus depth profile was derived by relating local seismic P -wave interval velocities to Meissner et al. 's activation energy. The results show that the series of subhorizontal reflections, observed in the Pannonian Basin, are a consequence of combined metamorphic and rheologic changes in depths. The synthesis of the integrated data set suggests that the retrograde alteration of the pre-Tertiary basement above the percolation threshold was made possible by the softening effect of shear zones and their water-conducting capacity. The subhorizontal reflections of highest energy, of the consolidated crust below the percolation threshold, originate in the depths of greenschist, amphibolite and granulite metamorphic mineral facies, which were formed in geothermal and pressure conditions similar to those existing today. These results imply the overprint of earlier (Variscan) metamorphic sequences of the crust by more recent retrograde metamorphic processes.  相似文献   
38.
塔里木盆地东河砂岩沉积和储层特征及综合分析   总被引:21,自引:0,他引:21  
东河砂岩是一套海侵初期的沉积产物,东河砂岩不是一个等时沉积体,相当于晚泥盆世晚期至早石炭世早期沉积,具体沉积时间各地有差异。由于东河砂岩是覆盖广泛的海侵初期沉积,因此具有海侵初期填平补齐的特征,其沉积相决定于海侵的速度、沉积物的供给和海侵前的古地貌。塔北地区受塔北古隆起的阻挡,海水在古隆起周围滞留时间较长,又有较粗粒的物源供给,其沉积产物主要是滨岸海滩沉积;塔中地区由于地形复杂,沉积类型也比较复杂,底部砾岩段有河流相沉积,而块状砂岩段和砂砾岩段有河口湾和滨岸海滩沉积,不同段在成分、分选性和粒级上有较大的差异;而其它低平地区主要是海侵期快速的滨岸和陆架沉积。受沉积因素影响,东河砂岩有效储层的分布具有地域性;除沉积因素外,低的地温梯度和短期的深埋藏是优质储层发育的重要控制因素。  相似文献   
39.
Pressure–temperature grids in the system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O and its subsystems have been calculatedin the range 15–45 kbar and 550–900°C, usingan internally consistent thermodynamic dataset and new thermodynamicmodels for amphibole, white mica, and clinopyroxene, with thesoftware THERMOCALC. Minerals considered for the grids includegarnet, omphacite, diopside, jadeite, hornblende, actinolite,glaucophane, zoisite, lawsonite, kyanite, coesite, quartz, talc,muscovite, paragonite, biotite, chlorite, and plagioclase. Compatibilitydiagrams are used to illustrate the phase relationships in thegrids. Coesite-bearing eclogites and a whiteschist from Chinaare used to demonstrate the ability of pseudosections to modelphase relationships in natural ultrahigh-pressure metamorphicrocks. Under water-saturated conditions, chlorite-bearing assemblagesin Mg- and Al-rich eclogites are stable at lower temperaturesthan in Fe-rich eclogites. The relative temperature stabilityof the three amphiboles is hornblende > actinolite > glaucophane(amphibole names used sensu lato). Talc-bearing assemblagesare stable only at low temperature and high pressure in Mg-and Al-rich eclogites. For most eclogite compositions, talccoexists with lawsonite, but not zoisite, in the stability fieldof coesite. Water content contouring of pressure–temperaturepseudosections, along with appropriate geotherms, provides newconstraints concerning dehydration of such rocks in subductingslabs. Chlorite and lawsonite are two important H2O-carriersin subducting slabs. Depending on bulk composition and pressure–temperaturepath, amphibole may or may not be a major H2O-carrier to depth.In most cases, dehydration to make ultrahigh-pressure eclogitestakes place gradually, with H2O content controlled by divariantor higher variance assemblages. Therefore, fluid fluxes in subductionzones are likely to be continuous, with the rate of dehydrationchanging with changing pressure and temperature. Further, eclogitesof different bulk compositions dehydrate differently. Dehydrationof Fe-rich eclogite is nearly complete at relatively shallowdepth, whereas Mg- and Al-rich eclogites dehydrate continuouslydown to greater depth. KEY WORDS: dehydration; eclogites; phase relations; THERMOCALC; UHP metamorphism; whiteschists  相似文献   
40.
Garnets in continentally derived high-pressure (HP) rocks ofthe Sesia Zone (Western Alps) exhibit three different chemicalzonation patterns, depending on sample locality. Comparisonof observed garnet zonation patterns with thermodynamicallymodelled patterns shows that the different patterns are causedby differences in the water content of the subducted protolithsduring prograde metamorphism. Zonation patterns of garnets inwater-saturated host rocks show typical prograde chemical zonationswith steadily increasing pyrope content and increasing XMg,together with bell-shaped spessartine patterns. In contrast,garnets in water-undersaturated rocks have more complex zonationpatterns with a characteristic decrease in pyrope and XMg betweencore and inner rim. In some cases, garnets show an abrupt compositionalchange in core-to-rim profiles, possibly due to water-undersaturationprior to HP metamorphism. Garnets from both water-saturatedand water-undersaturated rocks show signs of intervening growthinterruptions and core resorption. This growth interruptionresults from bulk-rock depletion caused by fractional garnetcrystallization. The water content during burial influences significantly thephysical properties of the subducted rocks. Due to enhancedgarnet crystallization, water-undersaturated rocks, i.e. thoselacking a free fluid phase, become denser than their water-saturatedequivalents, facilitating the subduction of continental material.Although water-bearing phases such as phengite and epidote arestable up to eclogite-facies conditions in these rocks, dehydrationreactions during subduction are lacking in water-undersaturatedrocks up to the transition to the eclogite facies, due to thethermodynamic stability of such hydrous phases at high P–Tconditions. Our calculations show that garnet zonation patternsstrongly depend on the mineral parageneses stable during garnetgrowth and that certain co-genetic mineral assemblages causedistinct garnet zonation patterns. This observation enablesinterpretation of complex garnet growth zonation patterns interms of garnet-forming reactions and water content during HPmetamorphism, as well determination of detailed P–T paths. KEY WORDS: dehydration; high-pressure metamorphism; Sesia Zone; subduction; thermodynamic modelling  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号