首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15541篇
  免费   2839篇
  国内免费   3588篇
测绘学   276篇
大气科学   1051篇
地球物理   2981篇
地质学   10851篇
海洋学   2063篇
天文学   19篇
综合类   757篇
自然地理   3970篇
  2024年   84篇
  2023年   244篇
  2022年   583篇
  2021年   662篇
  2020年   641篇
  2019年   707篇
  2018年   616篇
  2017年   716篇
  2016年   725篇
  2015年   730篇
  2014年   950篇
  2013年   1105篇
  2012年   978篇
  2011年   1111篇
  2010年   883篇
  2009年   1035篇
  2008年   1051篇
  2007年   1122篇
  2006年   1129篇
  2005年   877篇
  2004年   860篇
  2003年   782篇
  2002年   632篇
  2001年   556篇
  2000年   594篇
  1999年   475篇
  1998年   338篇
  1997年   347篇
  1996年   307篇
  1995年   263篇
  1994年   220篇
  1993年   155篇
  1992年   135篇
  1991年   98篇
  1990年   76篇
  1989年   55篇
  1988年   45篇
  1987年   19篇
  1986年   16篇
  1985年   10篇
  1984年   5篇
  1983年   5篇
  1982年   4篇
  1981年   10篇
  1980年   1篇
  1979年   3篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1954年   1篇
排序方式: 共有10000条查询结果,搜索用时 796 毫秒
41.
川西前陆盆地中—新生代沉积迁移与构造转换   总被引:10,自引:0,他引:10       下载免费PDF全文
川西前陆盆地中—新生代各构造层的残余厚度展布和沉积特征分析发现,四川克拉通周缘的前陆盆地在晚三叠世时期发育于龙门山山前,明显属于龙门山褶皱逆冲构造载荷所形成的前渊凹陷;侏罗纪早期的沉积地层呈面状分布,没有表现出显著的挠曲沉降,指示了一个构造相对平静的阶段;中侏罗世早期前渊凹陷迁移至龙门山北段和米仓山山前,前渊沉积从晚三叠世的北东向转换为近东西向,广泛的湖泊相沉积预示了前陆盆地的欠充填状态;中侏罗世中晚期,川西盆地沉降中心又迁移到大巴山山前,相应的挠曲变形又从近东西向转化为北西向,构成了大巴山的前渊凹陷;晚侏罗世—早白垩世时期,沉降中心再次回到米仓山山前,巨厚的前渊凹陷沉积指示了米仓山冲断带的主要活动时期;白垩纪末—古近纪的前渊凹陷则跃迁至雅安—名山地区。川西前陆盆地的同造山沉降中心以四川盆地中心为核心在西部和北部呈弧形迁移,沉积序列不断更替和叠加。中生界各构造层底界构造图显示现今的构造低部位位于川西北地区和川西南地区,在川西北地区均有东西走向的等值线分布,而川西南地区等值线走向则为北东-南西向。因此分析认为,晚侏罗世至早白垩世的构造变形可能控制了川西盆地现今的地层变形,形成了川西北地区的南北向构造挤压结构,而晚期的新生代构造变形则主要体现在川西盆地的西南部,形成北东-南西向的地层展布特征。  相似文献   
42.
长江三角洲北翼J9孔揭示地层和古地磁特征   总被引:2,自引:0,他引:2       下载免费PDF全文
长江三角洲北翼地区缺少较长尺度的第四纪海陆变迁及环境演变的深入探讨,深达423m的海安县基岩标J9孔为此提供了较好的研究对象。通过观察该孔松散层岩心,总结其沉积特征,认为岩心可明显地划分为6个特征岩性段。同时,地层古地磁测试结果显示:0~200m为布容正极性世,200~334m为松山负极性世,334m以下为高斯正极性世。综合分析岩心沉积特征并参考古地磁测试结果对地层进行了初步划分,认为:0~39m为全新世地层,39~153m为晚更新世地层,153~200m为中更新世地层,200-334m为早更新世地层,之下为新近纪地层。地层中存在晚更新世晚期特征的硬粘土标志层,指示本地不是冰后期古河谷的发育地。  相似文献   
43.
敦化盆地上侏罗统-上新统地层划分对比讨论   总被引:1,自引:0,他引:1       下载免费PDF全文
利用野外资料、地震资料、煤田钻孔资料以及古生物资料,对松辽盆地外围探区敦化盆地的代表性地层划分方案进行了梳理,通过敦化盆地与周缘盆地之间的对比和分析,得出下列认识:(1)明确了珲春组的时代为始新世—渐新世;(2)指出白垩系上统龙井组地层在敦化盆地内可能是不存在的;(3)将原帽儿山组上段和下段分别划归泉水村组和长财组;(4)认为大砬子组、泉水村组、长财组和屯田营组在敦化盆地内是存在的,并通过盆间岩性地层和古生物地层对比指出大砬子组的时代可能为早白垩世阿普特期(Aptian)—阿尔布期(Albian),长财组时代可能为早白垩世贝利阿斯期—阿普特期;(5)对敦化盆地内几个地方地层名称的使用进行了修正;(6)建立了敦化盆地内目前可供参考使用的地层序列。  相似文献   
44.
笔者从岩性地层、孢粉组合、地层对比等方面,对西河盆地红层的地层时代与沉积环境,进行深入的研究和探讨并追朔其地质演化历程。本区首次发现的孢粉组合是以草本植物蒿属为优势种,松、胡桃及禾本科为次优势种的疏林灌丛草原,其中胡桃属、榆属为典型的古—新近纪属种。根据岩性特征及生物特征综合分析研究,认为西河盆地“红土”地层属于新近系上新统宝格达拉组(N2b),地层层序类型在平面上体现出从盆地边缘到中心沉积环境由河流、冲积扇、三角洲到湖泊的变化规律。  相似文献   
45.
冀北滦平县西瓜园南李营剖面是西瓜园组的命名剖面,自下而上可划分为西瓜园组一至四段,为一套单一岩相的沉积岩。在火斗山乡马圈子,西瓜园组以一层水下分流河道砾岩与其下伏大店子组四段为连续沉积,拉海沟马圈子剖面为西瓜园组与大店子组的界线层型。西瓜园组自下而上可连续划分为5个叶肢介化石带,与辽西义县组尖山沟层、老公沟层一金刚山层的叶肢介组合完全可以对比.义县阶的单位层型应以西瓜园组为层型剖面,原定义县阶的单位层型马神庙一宋八户标准地层剖面仅能作为义县阶的副层型。由于辽西义县组尖山沟层至金刚山层的叶肢介化石在冀北西瓜园组中的系统发现,冀北地区西瓜园组与辽西义县组完全可以对比,从而解决了30余年来冀北辽西晚期中生代地层的对比问题,具有重要的地层意义。  相似文献   
46.
山东小清河的原生动物   总被引:1,自引:1,他引:1  
本文根据对山东小清河多年的污染生态调整研究,报导了淡水原生动物14种。  相似文献   
47.
试论东海陆架盆地的基底构造演化和盆地形成机制   总被引:4,自引:0,他引:4  
本文主要根据东海陆架盆地和周边的地质、地球物理资料,分析盆地的基底岩性特征、结构特征。认为东海陆架盆地的基底除元古界片麻岩外,还分布有一定范围的中生界及古生界。基底构造特征是纵向上多层次,横向上不均一,南北有别,东西分带。构造演化上经历了张、合、压、扭等复杂过程。  相似文献   
48.
本文根据有机地球化学资料,首次研究和探讨了珠江三角洲晚第四纪沉积物中有机质丰度和可溶有机质的组成特征。现代沉积物有机质丰度,有机碳为0.58%,氯仿沥青“A”为210ppm,烃含量为33.8ppm;钻孔中有机碳为0.77%,氯仿沥青“A”为253ppm,烃含量为16.4ppm。从有机质组成、红外吸收光谱特征、δ~(13)C、干酪根H/C原子比,均表现为陆生植物为主,水生生物为铺,为腐殖型或腐泥—腐殖型的母质类型。  相似文献   
49.
研究了2003年10月采于珠江口5个站位的沉积物剖面酸挥发性硫化物(AVS)和同时提取的重金属(SEM:Pb,Zn,Cu,Cd,Ni)。其中,站位1、2位于中滩,其沉积物的AVS含量变化范围较小,为0.25—4.06μmol.g-1;站位3、4位于西滩,其沉积物的AVS含量变化范围较大,为0—26.09μmol.g-1。中滩和西滩沉积物的AVS含量均随深度增加。西滩表层沉积物的AVS含量接近于零,这可能与该水域较强的底层流和沉积物的再悬浮作用有关。站位5位于珠江口外侧,其表层沉积物的AVS含量相对较高,且垂向变化较小,可能是还原性沉积物间歇性再悬浮后重新沉积的结果。站位1、2和5沉积物中同时提取的重金属含量大体在0.95±0.2μmol.g-1范围内,随深度增加略呈下降趋势;而西滩沉积物重金属含量相对较高,为1.43—2.42μmol.g-1,且在一定深度范围内随深度增加呈明显下降的趋势,表明珠江口西滩沉积物中的重金属污染有加重的趋势。对AVS/SEM摩尔比值和单个金属的毒性效应研究显示,珠江口内尤其是西滩的表层沉积物存在重金属污染,对其中生活的底栖生物具有潜在的毒性效应。  相似文献   
50.
For strongly tidal, funnel-shaped estuaries, we examine how tides and river flows determine size and shape. We also consider how long it takes for bathymetric adjustment, both to determine whether present-day bathymetry reflects prevailing forcing and how rapidly changes might occur under future forcing scenarios.Starting with the assumption of a 'synchronous' estuary (i.e., where the sea surface slope resulting from the axial gradient in phase of tidal elevation significantly exceeds the gradient in tidal amplitude ), an expression is derived for the slope of the sea bed. Thence, by integration we derive expressions for the axial depth profile and estuarine length, L, as a function of and D, the prescribed depth at the mouth. Calculated values of L are broadly consistent with observations. The synchronous estuary approach enables a number of dynamical parameters to be directly calculated and conveniently illustrated as functions of and D, namely: current amplitude Û, ratio of friction to inertia terms, estuarine length, stratification, saline intrusion length, flushing time, mean suspended sediment concentration and sediment in-fill times.Four separate derivations for the length of saline intrusion, LI, all indicate a dependency on (Uo is the residual river flow velocity and f is the bed friction coefficient). Likely bathymetries for `mixed' estuaries can be delineated by mapping, against and D, the conditions LI/L<1,EX/L<1 (EX is the tidal excursion) alongside the Simpson-Hunter criteria D/U3<50 m−2 s3. This zone encompasses 24 out of 25 `randomly' selected UK estuaries.However, the length of saline intrusion in a funnel-shaped estuary is also sensitive to axial location. Observations suggest that this location corresponds to a minimum in landward intrusion of salt. By combining the derived expressions for L and LI with this latter criterion, an expression is derived relating Di, the depth at the centre of the intrusion, to the corresponding value of Uo. This expression indicates Uo is always close to 1 cm s−1, as commonly observed. Converting from Uo to river flow, Q, provides a morphological expression linking estuarine depth to Q (with a small dependence on side slope gradients).These dynamical solutions are coupled with further generalised theory related to depth and time-mean, suspended sediment concentrations (as functions of and D). Then, by assuming the transport of fine marine sediments approximates that of a dissolved tracer, the rate of estuarine supply can be determined by combining these derived mean concentrations with estimates of flushing time, FT, based on LI. By further assuming that all such sediments are deposited, minimum times for these deposition rates to in-fill estuaries are determined. These times range from a decade for the shortest, shallowest estuaries to upwards of millennia in longer, deeper estuaries with smaller tidal ranges.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号