首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   657篇
  免费   223篇
  国内免费   142篇
测绘学   6篇
大气科学   8篇
地球物理   155篇
地质学   687篇
海洋学   103篇
天文学   1篇
综合类   30篇
自然地理   32篇
  2024年   3篇
  2023年   20篇
  2022年   31篇
  2021年   35篇
  2020年   43篇
  2019年   51篇
  2018年   43篇
  2017年   75篇
  2016年   76篇
  2015年   46篇
  2014年   72篇
  2013年   60篇
  2012年   47篇
  2011年   50篇
  2010年   40篇
  2009年   43篇
  2008年   37篇
  2007年   41篇
  2006年   19篇
  2005年   32篇
  2004年   22篇
  2003年   21篇
  2002年   18篇
  2001年   14篇
  2000年   12篇
  1999年   10篇
  1998年   12篇
  1997年   10篇
  1996年   5篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   3篇
  1991年   4篇
  1990年   6篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1979年   1篇
  1978年   1篇
  1954年   1篇
排序方式: 共有1022条查询结果,搜索用时 31 毫秒
51.
南羌塘盆地扎仁古油藏白云岩储层特征及成因研究   总被引:9,自引:1,他引:9       下载免费PDF全文
根据薄片、铸体薄片、压汞、阴极发光等研究,详细描述了南羌塘盆地扎仁古油藏白云岩的储层特征,并对白云岩成因作了初步研究。认为该白云岩在沉积期后变化中经历了多种成岩作用改造,其中影响白云岩储集性的作用主要有白云石化作用、溶蚀作用、重结晶作用和构造应力作用,对白云岩孔渗改善起了积极作用。白云岩主要储集空间为晶间孔、晶间溶孔,储集物性良好。广泛发育的白云石环边结构等淡水成因标志表明,该区白云岩是通过大气水-海水孔隙混合流体交代灰岩所形成的。  相似文献   
52.
塔河地区加里东中期古岩溶作用及分布模式   总被引:7,自引:0,他引:7       下载免费PDF全文
张涛  蔡希源 《地质学报》2007,81(8):1125-1134
地震资料解释、地层古生物、钻井地质及地球化学等方面的证据证实塔北地区存在加里东期运动及该期岩溶作用。本文探讨了原岩性质、断裂裂缝发育程度、古地貌形态、古气候等岩溶发育的控制因素,从岩石学、锶同位素、包裹体特征等方面建立了识别加里东期大气水作用的标志,指出早期断裂及伴生裂缝发育程度是加里东中期岩溶作用的主控因素,总结了该期岩溶具有以下特征:①层控性:岩溶发育具有发育面积广,深度浅,在不整合面以下0~35m发育;②断控性:较大溶洞发育在断裂附近;③有效储层具较强非均质性。由此预测该储层发育区位于古风化壳剥蚀区和加里东期断裂发育区的叠合部位,主要位于阿克库勒凸起的轴部倾没端和塔河西南部、东南部的北东向、近南北向断裂发育区。该期岩溶的存在与发现,对塔河油田南部的油气勘探具有重要意义。  相似文献   
53.
鄂尔多斯盆地中南部延长组8油层组主要成岩作用包括压实作用、石英次生加大、自生绿泥石膜生长、次生高岭石化、连晶方解石交代、长石溶蚀。根据铸体薄片,碳氧同位素分析,确定了各种主要成岩产物的空间分布和成因,分析了成岩产物分布与现今总面孔率的关系,从而确定8油层组的物性主要受石英次生加大、连晶方解石、长石溶孔、剩余原生孔隙分布的控制。石英次生加大和连晶方解石发育的地方,储层物性差;具自生绿泥石膜的剩余原生孔隙和长石溶孔发育的地方,储层物性好。  相似文献   
54.
库区蓄水型人工增雨效果评估及其应用   总被引:1,自引:0,他引:1  
通过对降水影响系统分型,给出了以同一影响天气系统下的降水时段为评估单元,对降水前后目标区和控制区的流域面雨量、入库流量和作业前后雷达回波参量进行评估,并对2005年夏季增雨作业个例进行了计算,结果表明,雷达回波参量在作业前后有明显的变化,平均增雨率为19.61%,投入产出比为1:37,经济效益显著。  相似文献   
55.
Computer modeling and simulation of coalbed methane resources   总被引:3,自引:0,他引:3  
Coal seam gas reservoirs are complex both geologically and in the mechanism of gas production. Understanding these naturally fractured reservoirs for two-phase (gas–water) flow conditions is often limited by a lack of data. This paper illustrates that reservoir simulation is a powerful tool which can be used to determine key data requirements, and how variability in reservoir properties and operating practices affect performance at the field level. The paper presents examples of how reservoir simulation can be used to assess the efficiency of well completions (fracturing or cavitation), identify candidate wells for remedial treatment, examine methane drainage in advance of mining, and assess the impact of errors in measured data on long-term gas production forecasts.  相似文献   
56.
本文利用变参数回归分析建立了多口井的泥质岩储层裂缝密度模型。该模型的平均相对误差为13.5%,较常系数回归分析、BP网络模型进行裂缝预测的精度高(平均相对误差分别为38.7%、17.9%)。通过实际资料处理认为该油田在纵向上随时代变老,深度加深,裂缝密度降低。即从N22、N12到N1,平均裂缝密度从0.78条/m、0.5条/m降低到0.3条/m。在平面上,沿构造轴部裂缝最发育,平均裂缝密度N22、N12、N1层分别为0.58条/m、0.6条/m、0.3条/m。  相似文献   
57.
The authors conducted a Rn222 survey in wells of the Larderello geothermal field (Italy) and observed considerable variations in concentrations. Simple models show that flow-rate plays an important part in the Rn222 content of each well, as it directly affects the fluid transit time in the reservoirs. Rn222 has been sampled from two wells of the Serrazzano area during flow-rate drawdown tests. The apparent volume of the steam reservoir of each of these two wells has been estimated from the Rn222 concentration versus flow-rate curves.List of symbols Q Flow-rate (kg h–1) - Decay constant of Rn222 (=7.553×10–3 h–1) - Porosity of the reservoir (volume of fluid/volume of rock) - 1 Density of the fluid in the reservoir (kg m–3) - 2 Density of the rock in the reservoir (kg m–3) - M Stationary mass of fluid filling the reservoir (kg). - E Emanating power of the rock in the reservoir (nCi kg rock –1 h–1). - P Production rate of Rn222 in the reservoir: number of atoms of Rn222 (divided by 1.764×107) transferred by the rock to the mass unit of fluid per unit time (nCi kg fluid –1 h–1). - N Specific concentration of Rn222 in the fluid (nCi kg–1) - Characteristic time of the steam reservoir at maximum flow-rate (=M/Q)  相似文献   
58.
59.
Geochemical studies of shale gas and conventional reservoirs within the Triassic Yanchang Formation of Xiasiwan and Yongning Field, Ordos Basin show that methane is isotopically depleted in 13C as compared to δ13C1 calculated by the Ro based on the relationship between δ13C1 and Ro. Geochemical fractionation during the adsorption/desorption process of shale system may play a significant part in influencing δ13C1 values of shale gas. Two shale core samples from confined coring of the Yanchang Formation were adopted segmented desorption experiments to examine this phenomenon. The results show that the δ13C1 of desorbed gas changes little in the first few phases of the experiments at low desorption levels, but become less negative rapidly when the fraction of desorbed methane exceeds 85%. The desorption process for the last 15% fraction of the methane from the shale samples shows a wide variation in δ13C1 from −49‰ to −33.9‰. Moreover, δ13C1 of all desorbed methane from the shale samples is substantially depleted in 13C than that calculated by Ro, according to Stahl and Carey's δ13C1–Ro equation for natural gas generated from sapropelic organic matter. This shows some gases with isotopically enriched in 13C cannot be desorbed under the temperature and pressure conditions of the desorption experiments. This observation may be the real reason for the δ13C1 of shale gases and conventional reservoirs becomes more negative in Xiasiwan and Yongning Fields, Ordos Basin. The magnitude of the deviation between the δ13C1 of shale gas and that calculated by Ro may be related to the adsorption capacity of shale or the proportion of absorbed gases. In this way, we may be able to evaluate the relative adsorption capacity of shale in geological conditions by δ13C1 of the shale gas, or by δ13C1 of conventional gas which generated by the shale with certainty. The δ13C1 of conventional gas in Dingbian and Yingwang Fields have no deviation because the TOC value of the hydrocarbon source rock is relatively low.  相似文献   
60.
Nine organic-rich shale samples of Lower Cambrian black shales were collected from a recently drilled well in the Qiannan Depression, Guizhou Province where they are widely distributed with shallower burial depth than in Sichuan Basin, and their geochemistry and pore characterization were investigated. The results show that the Lower Cambrian shales in Qiannan Depression are organic rich with TOC content ranging from 2.81% to 12.9%, thermally overmature with equivalent vitrinite reflectance values in the range of 2.92–3.25%, and clay contents are high and range from 32.4% to 53.2%. The samples have a total helium porosity ranging from 2.46% to 4.13% and total surface area in the range of 9.08–37.19 m2/g. The estimated porosity in organic matters (defined as the ratio of organic pores to the volume of total organic matters) based on the plot of TOC vs helium porosity is about 10% for the Lower Cambrian shales in Qiannan Depression and is far lower than that of the Lower Silurian shales (36%) in and around Sichan Basin. This indicates that either the organic pores in the Lower Cambrian shale samples have been more severely compacted than or they did not develop organic pores as abundantly as the Lower Silurian shales. Our studies also reveal that the micropore volumes determined by Dubinin–Radushkevich (DR) equation is usually overestimated and this overestimation is closely related to the non-micropore surface area of shales (i.e. the surface area of meso- and macro-pores). However, the modified BET equation can remove this overestimation and be conveniently used to evaluate the micropore volumes/surface area and the non-micropore surface areas of micropore-rich shales.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号