首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6794篇
  免费   1747篇
  国内免费   916篇
测绘学   28篇
大气科学   2篇
地球物理   4265篇
地质学   4576篇
海洋学   182篇
天文学   9篇
综合类   305篇
自然地理   90篇
  2024年   45篇
  2023年   172篇
  2022年   225篇
  2021年   213篇
  2020年   251篇
  2019年   313篇
  2018年   222篇
  2017年   281篇
  2016年   357篇
  2015年   327篇
  2014年   555篇
  2013年   369篇
  2012年   325篇
  2011年   402篇
  2010年   414篇
  2009年   445篇
  2008年   440篇
  2007年   404篇
  2006年   382篇
  2005年   321篇
  2004年   287篇
  2003年   281篇
  2002年   300篇
  2001年   241篇
  2000年   232篇
  1999年   209篇
  1998年   202篇
  1997年   184篇
  1996年   228篇
  1995年   203篇
  1994年   145篇
  1993年   134篇
  1992年   89篇
  1991年   61篇
  1990年   49篇
  1989年   37篇
  1988年   30篇
  1987年   25篇
  1986年   10篇
  1985年   4篇
  1984年   13篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   4篇
  1979年   4篇
  1978年   4篇
  1977年   8篇
  1954年   6篇
排序方式: 共有9457条查询结果,搜索用时 15 毫秒
51.
遥感技术在煤炭地质中的应用现状及前景   总被引:6,自引:0,他引:6  
介绍了遥感技术在煤炭资源调查和评价、煤矿区地质灾害调查和评估、生态环境及污染调查评价和监测以及煤矿三维可视化仿真规划系统建设方面的应用研究现状及所取得的主要成果,并结合遥感技术的发展方向,展望了其在煤炭地质中的应用前景。  相似文献   
52.
本文简述了开发地震快报系统的主要技术。  相似文献   
53.
对泉店井田的地质构造进行了分析研究,阐明了断层及褶曲的分布,探讨了井田的构造演化,分析了构造特别是断层对二1煤层的影响,为今后煤矿开发生产提供了可靠的地质依据.  相似文献   
54.
通过西部煤炭资源勘查对遥感技术的需求以及煤田地质体的可解译性、遥感技术的实际应用效果分析,论述了西部煤炭资源调查评价中遥感技术的重要作用,提出了今后遥感技术的应用建议.  相似文献   
55.
煤矿采区三维地震资料解释中的切片技术及其应用   总被引:3,自引:1,他引:3  
长期以来,煤矿采区三维地震勘探资料解释的工作流程与二维地震勘探基本相同,三维地震资料相对二维地震资料所具有的许多解释方面的优越性未能有效发挥出来,人机联作的过程相对简单.在三维地震勘探获取的三维数据体基础上,可做进一步的运算和分析,提取速度、振幅、频率、相位等相关信息,并利用等时切片、层拉平切片、断层切片、面块切片、方差体、相干体等各种技术,有效解释小构造、小褶曲及岩性方面的信息.  相似文献   
56.
东乡铜矿断裂带构造地球化学及找矿标志   总被引:4,自引:2,他引:4  
东乡铜矿区主要断裂带SiO2明显为带入组分,K^ ,Na^ ,Ca^2 ,Mg^2 属带出组分,Fe^3 /Fe^2 比值相对较低,成矿元素Cu,Pb,Zn,Ag,Au,As,Sb,Mo,Sn含量增高,属于明显的带入组分,可作为储矿断裂的找矿标志。  相似文献   
57.
四川攀西地区具有特定的地质条件,区域地球化学特征、有利的成矿环境和已发现的银矿床点,都证明区内具有很好的成矿地质条件,寻找大型独立银矿很有前景。主攻内生型和沉积变质型银矿床是今后工作的重点。  相似文献   
58.
Multichannel seismic reflection data acquired by Marine Arctic Geological Expedition (MAGE) of Murmansk, Russia in 1990 provide the first view of the geological structure of the Arctic region between 77–80°N and 115–133°E, where the Eurasia Basin of the Arctic Ocean adjoins the passive-transform continental margin of the Laptev Sea. South of 80°N, the oceanic basement of the Eurasia Basin and continental basement of the Laptev Sea outer margin are covered by 1.5 to 8 km of sediments. Two structural sequences are distinguished in the sedimentary cover within the Laptev Sea outer margin and at the continent/ocean crust transition: the lower rift sequence, including mostly Upper Cretaceous to Lower Paleocene deposits, and the upper post-rift sequence, consisting of Cenozoic sediments. In the adjoining Eurasia Basin of the Arctic Ocean, the Cenozoic post-rift sequence consists of a few sedimentary successions deposited by several submarine fans. Based on the multichannel seismic reflection data, the structural pattern was determined and an isopach map of the sedimentary cover and tectonic zoning map were constructed. A location of the continent/ocean crust transition is tentatively defined. A buried continuation of the mid-ocean Gakkel Ridge is also detected. This study suggests that south of 78.5°N there was the cessation in the tectonic activity of the Gakkel Ridge Rift from 33–30 until 3–1 Ma and there was no sea-floor spreading in the southernmost part of the Eurasia Basin during the last 30–33 m.y. South of 78.5°N all oceanic crust of the Eurasia Basin near the continental margin of the Laptev Sea was formed from 56 to 33–30 Ma.  相似文献   
59.
Lithoprobe and industry seismic profiles have furnished evidence of major zones of easterly dipping Grenville deformed crust extending southwest from exposed Grenville rocks north of Lake Ontario. Additional constraints on subsurface structure limited to the postulated Clarendon–Linden fault system south of Lake Ontario are provided by five east–west reflection lines recorded in 1976. Spatial correlations between seismic structure and magnetic anomalies are described from both Lake Ontario and the newly reprocessed New York lines.In the Paleozoic to Precambrian upper crust, the New York seismic sections show: (1) An easterly thickening wedge of subhorizontal Paleozoic strata unconformably overlying a Precambrian basement whose surface has an apparent regional easterly dip of 1–2°. Minor apparent normal offsets, possibly on the order of tens of meters, occur within the Paleozoic section. The generally poorly reflective unconformity may be locally characterized by topographic relief on the order of 100 m; (2) Apparent local displacement on the order of 90 m at the level of the Black River Group diminishes upward to little or no apparent offset of Queenston Shale; (3) Within the limited seismic sections, there appears to be no evidence that the complete upper crustal section is vertically or subvertically offset; (4) Dipping structure in the Paleozoic strata (15° to 35°) resembles some underlying Precambrian basement elements; (5) The surface continuity of inferred faults constituting the Clarendon–Linden system is not strongly supported by the seismic data.Beneath the Paleozoic strata, the seismic sections show both linear and arcuate reflector geometry with easterly apparent dips of 15° to 35° similar to the deep structures imaged on seismic lines from nearby Lake Ontario and on Lithoprobe lines to the north. The similarity supports an extension of easterly dipping Central Metasedimentary Belt structures of the Grenville orogen from southern Ontario to beneath western New York State.From a comparison of the magnetic and gravity fields with the New York seismic sections, we suggest: (1) The largely nonmagnetic Paleozoic strata appear to contribute negligibly to magnetic anomalies. Seismically imaged fractures in the New York Paleozoic strata appear to lie mainly west of a positive gravity anomaly. The relationship between magnetic and gravity anomalies and the changes in the geometry of interpreted Precambrian structures remains enigmatic; (2) North to northeast trending curvilinear magnetic and gravity anomalies parallel, but are not restricted to the principal trend of the postulated Clarendon–Linden fault system. Paleozoic fractures of the Clarendon–Linden system may partly overlie a southward extension of the Composite Arc Belt boundary zone.  相似文献   
60.
About 30 samples representing major lithologies of Sulu ultrahigh-pressure (UHP) metamorphic rocks were collected from surface exposures and exploration wells, and compressional (Vp) and shear wave (Vs) velocities and their directional dependence (anisotropy) were determined over a range of constant confining pressures up to 600 MPa and temperatures ranging from 20 to 600 °C. Samples range in composition from acidic to ultramafic. P- and S-wave velocities measured at 600 MPa vary from 5.08 to 8.64 km/s and 2.34 to 4.93 km/s, respectively. Densities are in the range from 2.60 to 3.68 g/cm3. To make a direct tie between seismic measurements (refraction and reflection) and subsurface lithologies, the experimental velocity data (corresponding to shallow depths) were used to calculate velocity profiles for the different lithologies and profiles of reflection coefficients at possible lithologic interfaces across the projected 5000-m Chinese Continental Scientific Drilling Program (CCSD) crustal segment. Comparison of calculated in situ velocities with respective intrinsic velocities suggests that the in situ velocities at shallow depths are lowered by an increased abundance of open microcracks. The strongly reflective zone beneath the Donghai drill site can be explained by the impedance contrasts between the different lithologies. Contacts between eclogite/peridotite and felsic rocks (gt-gneiss, granitic gneiss), in particular, may give rise to strong seismic reflections. In addition, shear-induced (lattice preferred orientation (LPO)-related) seismic anisotropy can increase reflectivity. For the explanation of the high velocity bodies (>6.4 km/s) around 1000 m and below 3200-m depth, large proportions of eclogite/peridotite (about 40 and 30 vol.%, respectively) are needed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号