首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1758篇
  免费   51篇
  国内免费   96篇
测绘学   3篇
大气科学   1篇
地球物理   1024篇
地质学   315篇
海洋学   327篇
天文学   2篇
综合类   18篇
自然地理   215篇
  2024年   1篇
  2023年   24篇
  2022年   34篇
  2021年   23篇
  2020年   35篇
  2019年   35篇
  2018年   39篇
  2017年   37篇
  2016年   46篇
  2015年   23篇
  2014年   87篇
  2013年   62篇
  2012年   30篇
  2011年   115篇
  2010年   74篇
  2009年   137篇
  2008年   141篇
  2007年   136篇
  2006年   83篇
  2005年   71篇
  2004年   65篇
  2003年   81篇
  2002年   57篇
  2001年   51篇
  2000年   44篇
  1999年   62篇
  1998年   31篇
  1997年   34篇
  1996年   21篇
  1995年   25篇
  1994年   32篇
  1993年   24篇
  1992年   32篇
  1991年   22篇
  1990年   15篇
  1989年   18篇
  1988年   11篇
  1987年   7篇
  1986年   9篇
  1985年   10篇
  1984年   3篇
  1983年   4篇
  1982年   4篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
排序方式: 共有1905条查询结果,搜索用时 15 毫秒
141.
1 INTRODUCTIONMany hydro-momhological mathematical models neglect the innuence of river bed maerialheterogeneity and its time and space changes during transport and related erosion/dePosition processes. Inthese models a rePresentative diameter of the river bed grain-size distribution (for examPle d5o) isspecified as initial data in each comPutational point of the modeled domain. Different d5o can be assignedto each ghd point but temPoral changes in bed material gradation cannot be simula…  相似文献   
142.
EVOLUTIONALCHARACTERISTICSOFHYPER-CONCENTRATEDFLOWINBRAIDEDCHANNELOFTHEYELLOWRIVER¥QIPu;LIWenxue(Seniorengineer,InstituteofHy...  相似文献   
143.
The Changjiang River is characterized by the enormous volume of runoff and the great amount of sediment load with remarkable seasonal variation. The annual runoff sometimes is respondent to the amount of sediment load, and sometimes not. The amount of monthly sediment load after the month of the maximum runoff is larger than those before the month. The sediment concentration and net quantity of sediment transport in the vicinity of the river mouth varies greatly in time between the ebb and flood, spring and neap, and dry seasons and flood seasons. The three bifurcations also have differences in concentration and net quantity in space. Even in the same bifurcation they have differences in and out of the sand bar. At present, the North Channel is the main passage for water and sediment load emptying into the sea from the Changjiang River. More than 50 percent of the sediments from the river basin are deposited nearby the South Branch entrance and the main depositional area is situated in subaqueous delta off the South Channel. Between 122°30'E and 123°E is an important boundary for eastward sediment dispersion from which the suspended sediment are dispersed towards the east by south.  相似文献   
144.
In order to preserve the storage capacity of the Nanqin Reservoir for long-term service, several remedial measures have been worked out: (a) measures to control the upstream extension of backwater deposits and to prevent gravel bed load from entering into the reservoir, so that no armour layer will be formed; (b) sediment sluicing by density current to reduce deposits of suspended load; (c) periodical sediment flushing by emptying reservoir to restore the effective storage capacity. In addition, conceptions of flood plain elevation in reservoir, storage volume required in the routing of turbid flow (density flow), the storage capacity that can be restored after being lost by deposition, and the storage volume for sediment regulation are also discussed.  相似文献   
145.
Bed load transport rates were measured with continuously recording pit samplers on two small gravel-bed streams in the Goodwin Creek Research Watershed, northern Mississippi, U.S.A. When transport samples were grouped according to whether the stage was rising or falling, significant differences in mean bed load transport rates were found at nearly all flow strengths. At higher flow strengths, mean bed load transport rates were greater during rising stages than during falling stages. The greater transport rates measured during rising stages may be caused by a lag in the formation and destruction of bed roughness elements. One of the streams also showed evidence for greater transport rates for low flows as the stage declined. This may be caused by differences in the stability of the bed material at the beginning and at the end of a transport event.  相似文献   
146.
In a basin developed on a stream table, effluent subsurface flow supported a channel network that evolved by a combination of headward growth, lateral widening and divide decay. The area occupied by the developing network increased with time. Circularity was used to characterize network evolution which occurred in three phases (initiation, extension and abstraction). Basin sediment discharge declined exponentially with time. Pronounced quasi-cyclic variability was superimposed upon this general trend. Some of the variability was directly linked to changes in the amount of sediment supplied to the channel. The variation of mean network sediment yield (mean sediment discharge scaled by network area) with time adequately described the general decline in sediment discharge as the network evolved.  相似文献   
147.
Arsenic-contaminated mine tailings that were discharged into Whitewood Creek at Lead, South Dakota, from 1876 to 1978, were deposited along the floodplains of Whitewood Creek and the Belle Fourche River. The resulting arsenic-contaminated floodplain deposit consists mostly of overbank sediments and filled abandoned meanders along White-wood Creek, and overbank and point-bar sediments along the Belle Fourche River. Arsenic concentrations of the contaminated sediments indicate the degree of dilution of mine tailings by uncontaminated alluvium. About 13 per cent of the 110 × 106 Mg of mine tailings that were discharged at Lead were deposited along the Whitewood Creek floodplain. Deposition of mine tailings near the mouth of Whitewood Creek was augmented by an engineered structure. About 29 per cent of the mine tailings delivered by Whitewood Creek were deposited along the Belle Fourche River floodplain. About 60 per cent of that sediment is contained in overbank deposits. Deposition along a segment of the Belle Fourche River was augmented by rapid channel migration. The proportions of contaminated sediment stored along Whitewood Creek and the Belle Fourche River are consistent with sediment storage along the floodplains of perennial streams in other, similar sized watersheds.  相似文献   
148.
Extensive storage of upper-basin Piedmont sediment and apparent low sediment supply to streams in lower-basin Coastal Plain areas generates questions as to the source of alluvium in lower reaches of rivers of the U.S. Atlantic drainage. This was investigated on the Neuse River, North Carolina, using a mineralogical indicator of sediment source areas. The utility of mica flakes for discriminating between Piedmont and non-Piedmont sources of sediment in the lower Coastal Plain reaches of the Neuse was established on the basis of an examination of the U.S. National Soils Database and of 26 soil surveys of the North Carolina Coastal Plain. From the Neuse River estuary to 48 km upstream there are no mica flakes in floodplain soils or in river bank and channel shelf sediments. Mica flakes become more common upstream. This suggests that a very small proportion of the sediment eroded in the Piedmont portion of the watershed is delivered to the river mouth. The small amounts which presumably do reach the lower Coastal Plain are so diluted by Coastal Plain-derived alluvium that no Piedmont origin can be discerned. This demonstrates a dominantly Coastal Plain source and underscores the importance of storage and discontinuous transport in fluvial sediment systems. More importantly, results suggest that upper- and lower-basin sediment dynamics are not only non-linearly related, but may be virtually decoupled.  相似文献   
149.
Comparison of eolian transport during five high-velocity wind events over a 29 day period on a narrow estuarine beach in Delaware Bay, New Jersey, USA, reveals the temporal variability of transport, due to changes in direction of wind approach. Mean wind speed measured 6 m above the dune crest for the five events ranged from 8·5 to 15·9 ms?1. Mean wind direction was oblique to the shoreline (63° from shore-normal) during one event but was within 14° of shore-normal during the other events. Eolian transport is greatest during low tide and rising tide, when the beach source area is widest and when drying of surface sediments occurs. The quantity of sediment caught in a vertical trap for the five events varied from a total of 0·07 to 113·73 kgm?1. Differences in temperature, relative humidity and moisture and salt content of surficial sediments were slight. Mean grain sizes ranged from 0·33 to 0·58 mm, causing slight differences in threshold shear velocity, but shear velocities exceeded the threshold required for transport during all events. Beach width, measured normal to the shoreline, varied from 15·5 to 18·0 m; beach slope differed by 0·5°. The oblique wind during one event created a source width nearly double the width during other days. Beach slope, measured in the direction of the wind, was less than half as steep as the slope measured normal to the shoreline. The amount of sand trapped during the oblique wind was over 20 times greater than any other event, even those with higher shear velocities. The ability of the beach surface to supply grains to the air stream is limited on narrow beaches, but increased source width, due to oblique wind approach, can partially overcome limitations of surface conditions on the beach.  相似文献   
150.
Surface elevation and current records contain non-tidal variance, often dismissed as noise. The processes responsible for the non-tidal component may also modulate the tidal signal, altering its strength and frequency structure. Because of their manner of generation and propagation, internal tides are inherently irregular. The non-stationary character of these and other tidal processes provides an integral and useful property of tidal records, because it provides an opportunity to obtain insights into tidal dynamics and the interaction of tidal and non-tidal processes. It is, moreover, productive to use multiple approaches in analyzing coastal and estuarine tidal processes so that both the time-varying and average frequency content are determined. Only by confronting the causes of non-stationary behaviour in this way can some of the remaining challenges in tidal analysis and prediction be overcome, e.g. shelf and estuarine currents, river tides, internal tides, tide-surge interactions and tidally influenced ecological processes. Several examples illustrate the utility of non-stationary tidal analysis methods.Responsible Editor: Jens Kappenberg  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号