首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1758篇
  免费   51篇
  国内免费   96篇
测绘学   3篇
大气科学   1篇
地球物理   1024篇
地质学   315篇
海洋学   327篇
天文学   2篇
综合类   18篇
自然地理   215篇
  2024年   1篇
  2023年   24篇
  2022年   34篇
  2021年   23篇
  2020年   35篇
  2019年   35篇
  2018年   39篇
  2017年   37篇
  2016年   46篇
  2015年   23篇
  2014年   87篇
  2013年   62篇
  2012年   30篇
  2011年   115篇
  2010年   74篇
  2009年   137篇
  2008年   141篇
  2007年   136篇
  2006年   83篇
  2005年   71篇
  2004年   65篇
  2003年   81篇
  2002年   57篇
  2001年   51篇
  2000年   44篇
  1999年   62篇
  1998年   31篇
  1997年   34篇
  1996年   21篇
  1995年   25篇
  1994年   32篇
  1993年   24篇
  1992年   32篇
  1991年   22篇
  1990年   15篇
  1989年   18篇
  1988年   11篇
  1987年   7篇
  1986年   9篇
  1985年   10篇
  1984年   3篇
  1983年   4篇
  1982年   4篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
排序方式: 共有1905条查询结果,搜索用时 15 毫秒
101.
Sediment yield from modern continental blocks is a function of the area (dissolved load) and hypsometry (mechanical load) of the blocks. Hypsographic curves for modern continental blocks show that the change in the percentage area flooded for any change in eustatic sea level depends on the size of the block and the absolute sea level. This allows predictions of changes in sediment yield around different sized blocks for any given eustatic change. The range in size of continental blocks is such that, for any given sea level change, the blocks will show different percentage changes in yield. Data from modern continental blocks are compared with theoretical results. Assuming that the rules governing modern hypsometries applied in the past, and a constant volume of continental crust, it is possible to estimate the hypsographic curves of former continental blocks. The implications of suggested past continental configurations and sea levels for sediment yield are discussed.  相似文献   
102.
Riverbank erosion, associated sedimentation and land loss hazards are a land management problem of global significance and many attempts to predict the onset of riverbank instability have been made. Recently, Osman and Thorne (1988) have presented a Culmann-type analysis of the stability of steep, cohesive riverbanks; this has the potential to be a considerable improvement over previous bank stability theories, which do not account for bank geometry changes due to toe scour and lateral erosion. However, in this paper it is shown that the existing Osman-Thorne model does not properly incorporate the influence of tension cracking on bank stability since the location of the tension crack on the floodplain is indirectly determined via calculation or arbitrary specification of the tension crack depth. Furthermore, accurate determination of tension crack location is essential to the calculation of the geometry of riverbank failure blocks and hence prediction of land loss and bank sediment yield associated with riverbank instability and channel widening. In this paper, a rational, physically based method to predict the location of tension cracks on the floodplain behind the eroding bank face is presented and tested. A case study is used to illustrate the computational procedure required to apply the model. Improved estimates of failure block geometry using the new method may potentially be applied to improve predictions of bank retreat and floodplain land loss along river channels destabilized as a result of environmental change.  相似文献   
103.
Measurements of rainfall, runoff and sediment export from a barren deposit of coal mine refuse in south-western Indiana were collected during three storms in the summer and autumn of 1990. Interfluve sheetwash, sediment mass flux, sediment concentration and, to a lesser extent, trunk gully discharge all responded quickly to changes in rainfall intensity. Grain-size distributions varied considerably during storms, containing exclusively fine-grained sediment at low sediment discharges but very large quantities of coarse (> 2mm) sediment at peak sediment discharges. Although data from a fairly long, multipulsed storm indicate that sediment production is limited by supply, the imbricated layer of flat chips that exists at the surface of the deposit is apparently mobilized during most high-intensity pulses of rainfall, thereby producing large volumes of coarse sediment during summer thunderstorms.  相似文献   
104.
The nature and rates of fluvial and slope processes change over time and space as urbanized areas replace forested land in Singapore. Storm-based and time-based data, from undisturbed rainforests, heavily disturbed construction sites, urban grass-covered slopes and an experimental plot, are collected to observe the impact of rainwater on the soil moisture conditions, surface microtopography, runoff generation, sediment movement, and ground lowering in the three different categories of land use. The undisturbed forested environment is characterized by high throughfall (58% of total rainfall) and frequent negative soil moisture suctions. The slow and unconcentrated overland flow during heavy storms is restricted by the forest floor microtopography. No rills develop. Ground lowering is recorded as 3·2–3·4 mm a?1. But sediment movement is episodic and suspended sediment concentrations in overland flow are 172–222 mg l?1. During urban construction, gully development is rapid on the bare slopes, runoff generation, voluminous, and sediment-laden discharges (5200–75498 mg l?1) lead to sediment plumes at channel mouths. Ground lowering rates are measured at 132·4 mm a?1. Once grass-covered, runoff carries less suspended sediment (800 mg l?1) and ground lowering rates are reduced, but depend on the condition of the cover, ranging from 0·2 to 8·2 mm a?1. As urban development continues, environments are altered both in time as well as spatially.  相似文献   
105.
小流域水沙耦合模拟概念模型*   总被引:6,自引:0,他引:6  
包为民 《地理研究》1995,14(2):27-34
小流域水沙耦合模拟概念模型,采用文献[1]、[2]和[4]中提出的概念性坡面产沙、沟蚀产沙、坡面汇沙、沟道汇沙和格林-安普特下渗曲线结构,结合水文学中的概念性汇流计算方法,构成了一个完整的、具有明确物理意义的流域水流、泥沙耦合模拟模型.该模型结构简单,经子洲试验站团山沟三试验场和蛇家沟、团山沟、水旺沟三试验小流域实测资料的模拟检查表明,模型结构合理、效果较好,适合于黄土地区流域.  相似文献   
106.
1. INTRODUCTIONAs a wide range of size distirbution including usually a certain POrtion of cohesive material is thecommon feature of the sediment constituting hyperconcentrated flows. it is desirable to study the settling properties of mixtures of cohesive and non--cohesjve sediment particles at high concentrations.Past studies on the settling of discrete particles in a suspension of fine cohesjve sediment is scarcein the literature. The Sediment Research Laboratory of Tsinghua Universi…  相似文献   
107.
Laminar sheetflows, transporting sediment at their capacity rates, both with and without rainfall disturbance, were investigated. Values of flow depth and relative submergence were very small. In the flows without rainfall, measured velocities exceeded the predictions of the smooth-surface, clear-water laminar model by an average of 12 per cent. Reduced flow resistance due to high sediment concentrations may explain this result. Velocities in the rainfall-disturbed flows were not significantly different from the predictions of the smooth-surface, clear-water model, and the velocity reduction due to rainfall was about 12 per cent. Although the uniformity of rainfall intensity under the single-nozzle rainfall simulator is high, variation of momentum and kinetic energy fluxes along the 1-5 m long flume was significant. The rainfall angle of incidence was highly correlated with deviations from expected flow velocities in the upper and lower sections of the flume.  相似文献   
108.
Field observations suggest that burrowing activity is the primary mode of sediment transport currently active in a small grassland drainage basin in Marin County, California. Spatial concentrations of the 1150 gopher mounds surveyed vary from 0-16 mounds m?2 on interfluves to 0.32 mounds m?2 on sideslopes and in the topographic hollow, with localized concentrations of up to 2.88 mounds m?2 on the margins of the colluvial deposit. Simple models of sediment transport by burrowing activity yield estimates of between 0.91 and 2.33 cm3 cm?1 yr?1 for the basin as a whole, with absolute minimum and maximum rates of 0.48 and 631 cm3 cm?1 yr?1. These values are similar to those previously estimated for this area (Lehre, 1982) and are nearly an order-of-magnitude less than average long-term sediment transport rates at the same site (Reneau, 1988).  相似文献   
109.
The relationship of hillslope erosion rates and sediment yield is often poorly defined because of short periods of measurement and inherent spatial and temporal variability in erosion processes. In landscapes containing hillslopes crenulated by alternating topographic noses and hollows, estimates of local hillslope erosion rates averaged over long time periods can be obtained by analysing colluvial deposits in the hollows. Hollows act as local traps for a portion of the colluvium transported down hillslopes, and erosion rates can be calculated using the age and size of the deposits and the size of the contributing source area. Analysis of colluvial deposits in nine Oregon Coast Range hollows has yielded average colluvial transport rates into the hollows of about 35cm3cm?1yr?1 and average bedrock lowering rates of about 0.07 mm yr?1 for the last 4000 to 15000 yr. These rates are consistent with maximum bedrock exfoliation rates of about 0.09 mm yr?1 calculated from six of the hollows, supporting the interpretation that exfoliation rates limit erosion rates on these slopes. Sediment yield measurements from nine Coast Range streams provide similar basin-wide denudation rates of between 0.05 and 0.08mm yr?1, suggesting an approximate steady-state between sediment production on hillslopes and sediment yield. In addition, modern sediment yields are similar in basins varying in size from 1 to 1500 km2, suggesting that erosion rates are spatially uniform and providing additional evidence for an approximate equilibrium in the landscape.  相似文献   
110.
The primary objective of this study was to compute a detailed budget for a small semiarid tropical drainage basin in Kenya. Results indicated that transfer of sediments (‘inputs’) from primary source areas was minor in comparison to changes in storage. The major sediment source area within the Katiorin drainage basin was the colluvial hillslope zone. The net change in storage within this zone was approximately 2100 Mg yr?1. Surface wash and rilling were the dominant transport processes responsible for the remobilization of colluvial sediments. Sediment storage within the in-channel reservoir increased by 60 Mg yr?1, which was minor when compared to the total store of sediment in this reservoir. During 1986, the channel network stored only a small fraction ( < 3 per cent) of the sediment delivered from the hillslope subsystem. Therefore, the in-channel reservoir had limited influence on sediment conveyance to the basin outlet. These data indicate that a static equilibrium condition cannot be assumed within the Katiorin drainage basin. Such an assumption would result in erosion estimates of approximately 5.5 mm yr?1 for the entire basin (based on a sediment output of 7430 Mg km?2 yr?1 and a measured bulk density of 1.35 Mg m?3). However, this masked the actual rates of 1.2 to 7.1 mm yr?1 in subbasin primary source areas, and rates of 0.6 to 17 mm yr?1 for colluvial material in the various subbasins. The extreme accelerated erosion rates resulted from minimal ground vegetation, steep slopes, soil crust formation, an erodible substrate, and a well-integrated drainage network for rapid conveyance of sediments from the hillslope subsystem to the basin outlet.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号