首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1857篇
  免费   74篇
  国内免费   101篇
测绘学   46篇
大气科学   3篇
地球物理   1051篇
地质学   336篇
海洋学   348篇
天文学   2篇
综合类   30篇
自然地理   216篇
  2024年   2篇
  2023年   27篇
  2022年   40篇
  2021年   31篇
  2020年   44篇
  2019年   43篇
  2018年   45篇
  2017年   46篇
  2016年   57篇
  2015年   30篇
  2014年   97篇
  2013年   63篇
  2012年   36篇
  2011年   126篇
  2010年   79篇
  2009年   144篇
  2008年   142篇
  2007年   136篇
  2006年   83篇
  2005年   78篇
  2004年   68篇
  2003年   82篇
  2002年   59篇
  2001年   52篇
  2000年   45篇
  1999年   63篇
  1998年   31篇
  1997年   34篇
  1996年   21篇
  1995年   25篇
  1994年   32篇
  1993年   24篇
  1992年   32篇
  1991年   23篇
  1990年   15篇
  1989年   18篇
  1988年   11篇
  1987年   7篇
  1986年   9篇
  1985年   10篇
  1984年   3篇
  1983年   4篇
  1982年   5篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
排序方式: 共有2032条查询结果,搜索用时 31 毫秒
161.
The United States Department of Agriculture (USDA) Annualized Agricultural Non-Point Source Pollution model (AnnAGNPS) is used to help evaluate a watershed response to agricultural management practices to control water quality. However, AnnAGNPS version 3.5 does not contain features to estimate the effect of a riparian buffer (RB) system on water quality. The Riparian Ecosystem Management Model (REMM) is used to simulate the impact of riparian buffer systems on water quality. However, frequently the lack of measured upland loadings that are required by REMM simulation limits the application of REMM. To address this data gap, a study was conducted to integrate AnnAGNPS with REMM for RB system simulation. AnnAGNPS was used to simulate water and sediment loadings from an upland field into a three-zone RB system at the Gibbs Farm located in the Georgia coastal plain. These AnnAGNPS outputs were used as the inputs to REMM. REMM was used to simulate water and sediment movement along the riparian buffers. The AnnAGNPS simulated amount of annual runoff at the edge of the field was close to observed amounts (Nash-Sutcliffe efficiency of 0.92). It is believed that a substantial portion of sand was removed from the runoff one meter into the grass buffer where the samplers were located; therefore, sand was excluded from the AnnAGNPS simulation for comparison with observed sediment. Excluding sand, the AnnAGNPS predicted amount of annual sediment matches the observed amount fairly well (Nash-Sutcliffe efficiency of 0.46). In addition, based on evaluating the percent reduction of sediment at each zonal interface, the AnnAGNPS/REMM model well simulated the function of the RB system to reduce sediment.  相似文献   
162.
Most of the streams in the Mediterranean region are temporary, following predictable seasonal of flooding and drying, with a transition from lotic conditions to shallow lentic conditions. The goal of our study was to assess the nitrogen and phosphorus dynamics in channel-bed processes of temporary streams between floods. Results show that, during winter, temperatures ranged between 9.5 and 11.2 °C and oxygen concentration ranged from 8.0 to 9.5 mg L−1, whereas, during summer, temperatures varied between 21.2 and 26.8 °C and oxygen between 1.2 and 5.3 mg L−1, with oxygen depletion in the pools during the night. The nitrate concentrations were far more abundant during winter (February), while ammonium concentration increased after stream fragmentation into pools (especially in July when oxygen depletion conditions favoured ammonification). Results on sediment profiles showed that the most active sediment layers for NH4-N are the top 2–3 cm, corresponding to the sediment depositional sites of the stream. Phosphate concentrations had larger variability, yet concentrations decreased from winter to spring and increased again in summer, when the shallow water pools were formed. Sediment profiles at the sediment depositional sites showed that PO4-P was more dynamic in the first 6 cm.

In Mediterranean temporary streams, nutrient dynamics vary seasonally, as the system transits from lotic conditions to shallow lentic conditions, evidencing the regeneration of nutrients from organic and inorganic matter during the flow cessation period.  相似文献   

163.
In southern Chile, with a mild and rainy climate, high levels of heavy metals have been detected in many gold placer deposits. Many of the contaminants pose risks to human life, and consequently damage the trofic chain in this environment. The study zones selected correspond to the handicraft gold-bearing sands of Rio Gato (Los Muermos), Carelmapu and Cucao. These are all located in the X Region of “Los Lagos” in Chile. The type of methodology used in the characterization of the associated mineralization consists of testing each representative sample with a grain size distribution, statistical parameter analysis and a mineralogical analysis, using a binocular magnifying glass, a petrographic microscope, XRD and SEM/EDX. The chemical composition was defined by means of X ray fluorescence and micro-chemical analysis. The results of the study about sediments in southern Chile are presented. The major concentrations of heavy minerals are generally located in areas of dynamic river energy. In the samples, more than 70% of the heavy minerals were distributed among grain sizes corresponding to thin sand with good grain selection (meshes of 0.25–0.06 mm). The main mineral phases present in the analysed samples were gold, zircon, olivine, ilmenite, hornblende, hypersthene, hematite, garnet, chromite, chlorite, augite, amphibolitic-epidote, etc. The main heavy metals found as a result of the study were mercury, lead, cadmium, chrome, tellurium, indium, zinc, cobalt, copper, platinum, gold, etc., and as well some less common elements like cerium, praseodymium, gadolinium, neodymium, samarium and lanthanum. This research work is only a starting point for carrying out a risk probability mapping of heavy metals and the mineralogy of the Cucao, Carelmapu and Rio Gato gold-bearing sands.  相似文献   
164.
《国际泥沙研究》2020,35(1):91-96
A dramatic decrease in the catch of shellfish has been observed due to the high amount of Acid Volatile Sulfide(AVS) in the tidal flats in Japan.In the current study,an evaluation of simultaneous bioelectricity generation and remediation of sulfide contaminated tidal flat sediment has been done.The sediment samples collected from Tokyo Bay and Yamaguchi Bay,Japan,have been used in the laboratory test.A 2 L cylindrical shaped Sediment Microbial Fuel Cell(SMFC) has been used to evaluate the remediation of both sediment samples in the laboratory.Three different electrode materials carbon felt,carbon fiber and bamboo charcoal were used in the experiments to compare their efficiency to reduce the AVS from the sediment and generate bioelectricity.It was observed that the AVS reduction was higher at 5 cm depths for the Tokyo Bay sediment(100%) compared to the Yamaguchi Bay sediment(60%).The larger grain size for the Tokyo Bay sediment was the probable reason for this.The maximum voltage was around 100 and80 mV for Tokyo Bay and Yamaguchi Bay,respectively.  相似文献   
165.
《国际泥沙研究》2020,35(2):146-156
Many of the dams built in estuaries in the last century have difficulty with water quality management.Numerous factors have affected the estuary lake water,most importantly external loadings,tidal currents,and increases in the phosphorus(P) release from sediment,so that most water quality characteristics in the estuary are highly interactive and dynamic.In the current study,water quality measurements were made in the laboratory and field,and a series of phosphorus release experiments was done to understand the behavior of P in an estuary lake.The concentrations of chemical oxygen demand(COD),chlorophyll-a(Chl-a),and total P(TP) showed an increasing trend when the pollutant loading of the influent stream water was high.The measurements showed increasing trends,which indicates the constituents are produced in the internal environment of the lake.When a large amount of freshwater flowed in from the upper watershed,density stratification was observed,which forms strongly because of the salinity of seawater.During the period of stratification,a hypoxic layer formed,which can accelerate P release.Comparing the open and dosed conditions of the release experiments,the P release rate was much higher under the closed condition than under the open condition.The maximum P release rates from the sediment collected from the five main sites of the lake were more than 2.5 times the P loading from the inflowing streams in April.Spatially,the release rate was higher mid-reservoir than down-reservoir where a halocline was evident The pollutant load discharged from the tributary watershed was deposited on the bottom mid-reservoir,whereas it was washed out downreservoir because of the density stratification and strong tide in that area.To sustainably manage water quality and decrease lake eutrophication in brackish environments formed by freshwater from streams mixing with seawater entering through sluice dikes,different measures than those applied in strictly freshwater environments are required.Considering the spatial characteristics of an estuary lake,these measures include 1) blocking settleable particles discharged from the rivers upstream,2) controlling hypoxia to avoid P release from the sediment and inhibiting algae growth mid-reservoir,and 3)decreasing stratification caused by the halocline down-reservoir.  相似文献   
166.
《国际泥沙研究》2020,35(3):269-277
The content of 19 metals(chromium,cobalt,nickel,strontium,arsenic,magnesium,barium,cesium,gallium,rubidium,uranium,vanadium,zinc,lead,copper,cadmium,iron,manganese,and aluminum) in sediment in three ephemeral streams(Nahal Sansana,Nahal Revivim and Nahal Pura) with reservoirs in the Negev Desert is studied herein.The study was done in September 2016.The samples were collected from the surface layer of sediment(up to 10 cm) in the reservoirs and in the channels upstream and downstream of the reservoirs.Silt,which on average,accounted for 72% dominated in the sediment.In the spatial distribution of the particle size,sand and gravel fractions were deposited in the reservoirs.Aluminum,iron,and magnesium accounted for 99% of all analyzed metals.The Principal Component Analysis(PCA) and Hierarchical Cluster Analysis(HCA) showed that sediment in the Negev Desert channel upstream of the reservoirs had similar concentrations of metals.Similarities were also found between the analyzed reservoirs.The bottom sediment in reservoirs had higher concentrations of metals than sediment upstream and downstream of the reservoirs.The comparison of concentrations in upstream and downstream locations did not show any unambiguous trends because metal concentrations downstream from the reservoirs were not always lower than upstream of the reservoirs.The analysis of the sediment enrichment factor(EF) showed the highest value in the reservoirs and the lowest downstream of the reservoirs.The concentrations of most analyzed metals did not indicate the possibility of potential ecological risk(SQG).  相似文献   
167.
《国际泥沙研究》2020,35(4):355-364
The scour and deposition pattern around an abutment under constant discharge condition is calculated using a three dimensional (3D) Computational Fluid Dynamics (CFD) model. The Reynolds-Averaged Navier Stokes (RANS) equations are solved in three dimensions using a CFD model. The Level Set Method (LSM) is used for calculation of both free surface and bed topography. The two-equation turbulence model (k-ε and k-ω) is used to calculate the eddy viscosity in the RANS equations. The pressure term in the RANS equations on a staggered grid is modeled using the Chorin's projection method. The 5th order Weighted Essentially Non-Oscillatory (WENO) scheme discretizes the convective term of the RANS equations. The Kovacs and Parker and Dey formulations are used for the reduction in bed shear stress on the sloping bed. The model also used the sandslide algorithm which limits bed shear stress reduction during the erosion process. The numerical model solution is validated against experimental results collected at the Politecnico di Milano, Milan, Italy. Further, the numerical model is tested for performance by varying the grid sizes and key parameters like the space and time discretization schemes. The effect of varying bed porosity has been evaluated. Overall, the free surface is well represented in a realistic manner and bed topography is well predicted using the Level Set Method (LSM).  相似文献   
168.
《国际泥沙研究》2020,35(4):408-416
The magnitude of soil erosion and sediment load reduction efficiency of check dams under extreme rainstorms is a long-standing concern. The current paper aims to use check dams to deduce the amount of soil erosion under extreme rainstorms in a watershed and to identify the difference in sediment interception efficiency of different types of check dams. Based on the sediment deposition at 12 check dams with 100% sediment interception efficiency and sub-catchment clustering by taking 12 dam-controlled catchments as clustering criteria, the amount of soil erosion resulting from an extreme rainstorm event on July 26, 2017 (named “7·26” extreme rainstorm) was estimated in the Chabagou watershed in the hill and gully region of the Loess Plateau. The differences in the sediment interception efficiency among the check dams in the watershed were analyzed according to field observations at 17 check dams. The results show that the average erosion intensity under the “7–26” extreme rainstorm was approximately 2.03 × 104 t/km2, which was 5 times that in the second largest erosive rainfall in 2017 (4.15 × 103 t/km2) and 11–384 times that for storms in 2018 (0.53 × 102 t/km2 - 1.81 × 103 t/km2). Under the “7–26” extreme rainstorm, the amount of soil erosion in the Chabagou watershed above the Caoping hydrological station was 4.20 × 106 t. The sediment interception efficiency of the check dams with drainage canals (including the destroyed check dams) and with drainage culverts was 6.48 and 39.49%, respectively. The total actual sediment amount trapped by the check dams was 1.11 × 106 t, accounting for 26.36% of the total amount of soil erosion. In contrast, 3.09 × 106 t of sediment were input to the downstream channel, and the sediment deposition in the channel was 2.23 × 106 t, accounting for 53.15% of the total amount of soil erosion. The amount of sediment transport at the hydrological station was 8.60 × 105 t. The Sediment Delivery Ratio (SDR) under the “7·26” extreme rainstorm was 0.21. The results indicated that the amount of soil erosion was huge, and the sediment interception efficiency of the check dams was greatly reduced under extreme rainstorms. It is necessary to strengthen the management and construction technology standards of check dams to improve the sediment interception efficiency and flood safety in the watershed.  相似文献   
169.
《国际泥沙研究》2020,35(6):600-608
Accumulation of the sediment in the stream of the diversion channels adversely affects its operational systems. Diversion channels are often constructed perpendicular to the main river. In this study, the water flow and sediment transport in the diversion channel with different angles were investigated in an attempt to maximize water discharge and minimize sediment discharge. A physical model with movable bed was used to simulate water and sediment flow with five diversion angles (θ) between (30°–90°). Moreover, three bed width ratios (Br) (the relation between diversion to main channel bed width) between 30% and 50% and five total discharges between (7.25 L/s to 12.25 L/s) were considered for each case of (θ). The results showed, up to 10%, increasing in proportion discharge ratios for 30 and 45 diversion angles compared with 90° diversion angle. The results also showed that the lowest diversion sediment concentration was provided by the (θ) of 30°. Across all scenarios, the average proportion concentration reduction was 64%, compared with 90° diversion angle. Closer observation of the diversion system mechanism confirmed that decreased (θ) result in decreased sediment concentrations in the diversion channels. In conclusion, the diversion channel water and sediment discharge could be effectively managed by changing the (θ) to 30° or 45° instead of 90°.  相似文献   
170.
ABSTRACT

We discuss the 2018 publication that reports petrographic, heavy mineral data, mineral chemistry, and zircon geochronology for Oligocene sandstones in the Cerro Pelón area in southern Mexico Sureste basin. As the title of their paper says, the goal of their study is to establish the source (s) of the voluminous Cenozoic section in this region, reaching several kilometres in thickness and important as a petroleum system. These authors conclude that Oligocene sandstones of La Laja Formation were mostly sourced from eclogite- to greenschist-facies metasedimentary, metaigneous, and ultramafic rocks of the Guatemala suture complex. Minor contributions from the Chiapas Massif Complex, exposed directly to the south ~60 km of the Cerro Pelón area, were also suggested by the authors. They thus conclude that the Palaeogene stratigraphic record in southeastern Mexico was mostly controlled by the development of the Caribbean–North America plate boundary rather than by orogenic processes at the Pacific margin of North America. Presently, we do not agree with the conclusions of Ortega Flores and colleagues who studied the Cerro Pelón section, thus some discussion is required. Serpentinite bearing Nanchital Conglomerate is well exposed in the Cerro Pelón area, and high- to low-grade metamorphic rocks experienced an uplift in the vicinity of the Cerro Pelón area at the time of deposition of the La Laja Formation. We believe the data are better explained by multiple local sources in southern and eastern Oaxaca as well as sources to the south and southwest, which include the Cenozoic coastal batholith, the Grenvillean/Guichicovi basement complexes, the Chiapas Massif, the Mazatlán schist and other units in the Cuicateco Belt, as well as the Mesozoic cover of these areas (Todos Santos Formation, Cretaceous carbonate rocks, and Paleogene strata such as the Soyaló and Bosque Formations).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号