首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6172篇
  免费   1387篇
  国内免费   3160篇
测绘学   50篇
大气科学   4篇
地球物理   752篇
地质学   9071篇
海洋学   199篇
天文学   2篇
综合类   356篇
自然地理   285篇
  2024年   29篇
  2023年   127篇
  2022年   181篇
  2021年   268篇
  2020年   258篇
  2019年   380篇
  2018年   283篇
  2017年   267篇
  2016年   390篇
  2015年   345篇
  2014年   459篇
  2013年   446篇
  2012年   503篇
  2011年   518篇
  2010年   406篇
  2009年   495篇
  2008年   440篇
  2007年   517篇
  2006年   507篇
  2005年   400篇
  2004年   377篇
  2003年   364篇
  2002年   313篇
  2001年   290篇
  2000年   261篇
  1999年   292篇
  1998年   283篇
  1997年   239篇
  1996年   212篇
  1995年   165篇
  1994年   133篇
  1993年   122篇
  1992年   98篇
  1991年   82篇
  1990年   51篇
  1989年   59篇
  1988年   49篇
  1987年   42篇
  1986年   21篇
  1985年   15篇
  1984年   12篇
  1983年   4篇
  1979年   1篇
  1978年   4篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1973年   3篇
  1972年   1篇
  1954年   3篇
排序方式: 共有10000条查询结果,搜索用时 390 毫秒
261.
Summary To understand the failure mechanism of quasi-brittle materials like rock under tensile stress, observations on the failure process of granite and marble plate specimens under tension are summarized and presented. Micro- and macro-failure properties of rock plates under uniaxial tension have been characterized by using an acoustic emission technique. Acoustic emission signals associated with micro-fractures are captured to locate the sources. An algorithm based on arrival time difference is developed for this purpose. The results reveal clearly the failure processes of rock which include initiation, nucleation and propagation of micro-fractures when the axial stress is close to the peak strength of rock. It is believed that the difference in heterogeneity between granite and marble specimens leads to different fracture shapes and different behaviors of associated acoustic emissions. Numerical simulation of acoustic emissions for two-dimensional tensile test is also carried out. The simulated characteristics are in good agreement with the experimental results.  相似文献   
262.
This paper presents a novel dynamical model to analyze the long‐term response of a percussive drilling system. This departs from existing approaches that usually consider a single activation and bit/rock interaction cycle for the analysis of the process performance. The proposed model integrates the axial dynamics of an elastic piston and an elastic drill bit, a motion‐dependent pressure law to drive the piston, and a generalized bit/rock interaction law representative of the dynamic indentation taking place at the bit/rock interface. It applies to down‐the‐hole percussive drilling as well as top‐hole, with minor modifications. The model does not account for the angular motion or the hole cleaning, however. The model is first formulated mathematically; then, a finite‐dimensional approximation is proposed for computations. Numerical analyses of the model response, for a low‐size down‐the‐hole percussive system, follow. The period‐1 stationary response for the reference configuration is studied in detail, and parametric analyses assessing the influence on the rate of penetration of the bit/rock interaction parameters, the feed force, and the percussive activation parameters are conducted. These analyses reveal that the multiscale nature of the process is well captured by the model and recover expected trends for the influence of the parameters. They also suggest that a significant increase of the penetration rate can be achieved by increasing the percussive frequency. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
263.
The microstructure of rock was numerically reproduced by a polygonal grain‐based model, and its mechanical behavior was examined by performing the uniaxial compression test and Brazilian tests via the Universal Distinct Element Code. The numerical results of the model demonstrated good agreement with the experimental results obtained with rock specimens in terms of the stress–strain behavior, strength characteristics, and brittle fracture phenomenon. An encouraging result is that the grain‐based model‐Universal Distinct Element Code model can reproduce a low ratio of tensile to compressive strength of 1/20 to 1/10 without the need for an additional process. This finding is ascribed to the fact that the geometrical features of polygons can effectively capture the effects of angularity, finite rotation, and interlocking of grains that exist in reality. A numerical methodology to monitor the evolution of micro‐cracks was developed, which enabled us to examine the progressive process of the failure and distinguish the contribution of tensile cracking to the process from that of shear cracking. From the observations of the micro‐cracking process in reference to the stress–strain relation, crack initiation stress, and crack damage stress, it can be concluded that the failure process of the model closely resembles the microscopic observations of rock. We also carried out a parametric study to examine the relationships between the microscopic properties and the macroscopic behavior of the model. Depending on the micro‐properties, the model exhibited a variety of responses to the external load in terms of the strength and deformation characteristics, the evolution of micro‐cracks, and the post‐peak behavior. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
264.
正20141864 Deng Mengchun(Institute of Exploration Technology,CAGS,Chengdu 611734,China);Huang Shenghui Rock Sample Collection and Division Technologies for Air Reverse Circulation Sampling Drilling(Exploration Engineering,ISSN1672-7428,CN11-5063/TD,40(7),2013,p.73-76,80,16 illus.,5 refs.)  相似文献   
265.
Conceived as a potential alternative to the classical design methods employed for analyzing the stability of underground structures driven in jointed rocks, the homogenization approach stems from the heuristic idea that, from a macroscopic point of view, a rock mass cut by a network of joints may be perceived as a homogenized continuum. The strength properties of the latter can be theoretically obtained from the failure conditions of its individual constituents: rock matrix and joint interfaces. At the material level, the limit analysis reasoning is used in the context of homogenization to formulate the homogenized strength criterion of a jointed rock mass in the particular situation of a single set of parallel joints. As it could be expected, the obtained closed‐form expressions show the strength anisotropy induced by joint preferential orientation. The support functions (π functions) associated with the homogenized strength criterion are also determined in both plane strain and three‐dimensional cases. This criterion is then applied to the investigation of stability analysis of a tunnel excavated in a jointed rock mass. Upper bounds estimated of the stability factor are derived from the implementation of the kinematic approach directly on the homogenized underground structure. Finally, the approach is applied to analyze and discuss the collapse of the Pinheiros subway station (São Paulo, Brazil). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
266.
A model for the stress‐dependent elastic wave velocity response of fractured rock mass is proposed based on experimental evidence of stress‐dependent fracture normal and shear stiffness. Previously proposed models and previous experimental studies on stress‐dependent fracture stiffness have been reviewed to provide a basis for the new model. Most of the existing stress‐dependent elastic wave velocity models are empirical, with model parameters that do not have clear physical meanings. To propose the new model, the rock mass is assumed to have randomly oriented microscopic fractures. In addition, the characteristic length of microfractures is assumed to be sufficiently short compared to the rock mass dimensions. The macroscopic stress‐dependent elastic wave velocity response is assumed to be attributed to the stress dependency of fracture stiffness. The stress‐dependent fracture normal stiffness is defined as a generalized power law function of effective normal stress, which is a modification of the Goodman's model. On the other hand, the stress dependency of fracture shear stiffness is modeled as a linear function of normal stress based on experimental data. Ultrasonic wave velocity responses of a dry core sample of Berea sandstone were tested at effective stresses ranging from 2 to 55 MPa. Visual observation of thin sections obtained from the Berea sandstone confirms that the assumptions made for microstructure of rock mass model are appropriate. It is shown that the model can describe the stress‐dependent ultrasonic wave velocity responses of dry Berea sandstone with a set of reasonable material parameter values. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   
267.
An innovative approach for regionalizing the 3‐D effective porosity field is presented and applied to two large, overexploited, and deeply weathered crystalline aquifers located in southern India. The method derives from earlier work on regionalizing a 2‐D effective porosity field in that part of an aquifer where the water table fluctuates, which is now extended over the entire aquifer using a 3‐D approach. A method based on geological and geophysical surveys has also been developed for mapping the weathering profile layers (saprolite and fractured layers). The method for regionalizing 3‐D effective porosity combines water table fluctuation and groundwater budget techniques at various cell sizes with the use of satellite‐based data (for groundwater abstraction), the structure of the weathering profile, and geostatistical techniques. The approach is presented in detail for the Kudaliar watershed (983 km2) and tested on the 730 km2 Anantapur watershed. At watershed scale, the effective porosity of the aquifer ranges from 0.5% to 2% in Kudaliar and between 0.3% and 1% in Anantapur, which agrees with earlier works. Results show that (a) depending on the geology and on the structure of the weathering profile, the vertical distribution of effective porosity can be very different and that the fractured layers in crystalline aquifers are not necessarily characterized by a rapid decrease in effective porosity and (b) that the lateral variations in effective porosity can be larger than the vertical ones. These variations suggest that within a same weathering profile, the density of open fractures and/or degree of weathering in the fractured zone may significantly vary from a place to another. The proposed method provides information on the spatial distribution of effective porosity that is of prime interest in terms of flux and contaminant transport in crystalline aquifers. Implications for mapping groundwater storage and scarcity are also discussed, which should help in improving groundwater resource management strategies.  相似文献   
268.
正1.HYDROGEOLOGY20142452Chang Chengcao(Institute of Coalfield Geological Survey and Design of Jilin Province,Changchun 130062,China)Hydrogeological Type Division of Coal Mine No.2Mine in Yitong Manchu Autonomous County,Jilin Province(Jilin Geology,ISSN1001-2427,CN22-1099/P,32(4),2013,p.129-131,3refs.)  相似文献   
269.
Within the framework of our discontinuous deformation analysis for rock failure algorithm, this paper presents a two‐dimensional coupled hydromechanical discontinuum model for simulating the rock hydraulic fracturing process. In the proposed approach, based on the generated joint network, the calculation of fluid mechanics is performed first to obtain the seepage pressure near the tips of existing cracks, and then the fluid pressure is treated as linearly distributed loads on corresponding block boundaries. The contribution of the hydraulic pressure to the initiation/propagation of the cracks is considered by adding the components of these blocks into the force matrix of the global equilibrium equation. Finally, failure criteria are applied at the crack tips to determine the occurrence of cracking events. Several verification examples are simulated, and the results show that this newly proposed numerical model can simulate the hydraulic fracturing process correctly and effectively. Although the numerical and experimental verifications focus on one unique preexisting crack, because of the capability of discontinuous deformation analysis in simulating block‐like structures, the proposed approach is capable of modeling rock hydraulic fracturing processes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
270.
An effective approach to modeling the geomechanical behavior of the network and its permeability variation is to use a poroelastic displacement discontinuity method (DDM). However, the approach becomes rather computationally intensive for an extensive system of cracks, particularly when considering coupled diffusion/deformation processes. This is because of additional unknowns and the need for time‐marching schemes for the numerical integration. The Fast Multipole Method (FMM) is a technique that can accelerate the solution of large fracture problems with linear complexity with the number of unknowns both in memory and CPU time. Previous works combining DDM and FMM for large‐scale problems have accounted only for elastic rocks, neglecting the fluid leak‐off from the fractures into the matrix and its influence on pore pressure and stress field. In this work we develop an efficient geomechanical model for large‐scale natural fracture networks in poroelastic reservoirs with fracture flow in response to injection and production operations. Accuracy and computational performance of the proposed method with those of conventional poroelastic DDM are compared through several case studies involving up to several tens of thousands of boundary elements. The results show the effectiveness of the FMM approach to successfully evaluate field‐scale problems for the design of exploitation strategies in unconventional geothermal and petroleum reservoirs. An example considering faults reveals the impact of reservoir compartmentalization because of sealing faults for both geomechanical and flow variables under elastic and poroelastic rocks. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号