首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7095篇
  免费   1321篇
  国内免费   1715篇
测绘学   881篇
大气科学   1372篇
地球物理   1683篇
地质学   3331篇
海洋学   1102篇
天文学   412篇
综合类   516篇
自然地理   834篇
  2024年   31篇
  2023年   105篇
  2022年   246篇
  2021年   297篇
  2020年   293篇
  2019年   382篇
  2018年   263篇
  2017年   322篇
  2016年   381篇
  2015年   377篇
  2014年   477篇
  2013年   603篇
  2012年   452篇
  2011年   436篇
  2010年   337篇
  2009年   498篇
  2008年   535篇
  2007年   484篇
  2006年   487篇
  2005年   444篇
  2004年   371篇
  2003年   299篇
  2002年   241篇
  2001年   198篇
  2000年   206篇
  1999年   190篇
  1998年   146篇
  1997年   119篇
  1996年   143篇
  1995年   200篇
  1994年   221篇
  1993年   68篇
  1992年   71篇
  1991年   45篇
  1990年   38篇
  1989年   23篇
  1988年   24篇
  1987年   11篇
  1986年   13篇
  1985年   18篇
  1984年   16篇
  1983年   6篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1978年   3篇
  1977年   1篇
  1954年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
The application of sulfur isotope (34S) values of sulfate in groundwater provided the information necessary to evaluate the source, transport and fate of battery acid and associated contaminants at the Gulf Coast Recycling (GCR) facility. The chemical and isotopic composition of groundwater beneath the (GCR) property, a battery recycling facility in east Tampa, Florida, varies more than expected for an area of comparable size. Sulfate (SO42–) values, for example, range from 1.2 to 11,500 mg/L and oxygen and hydrogen isotopes do not attenuate towards the weighted annual mean. Those samples that are high in sulfate generally have a low pH, which immediately indicates battery acid (H2SO4) contamination as a potential source for the sulfate. The low pH and high reactivity of the sulfuric acid groundwater cause the formation of hydrogeological microenvironments due to preferential dissolution of carbonate minerals, which in turn causes enhanced recharge and groundwater flow in certain areas; thus, the extreme scatter in the data set. Because of the difficult hydrogeology it is not straightforward to delineate the point-sources of contamination and up to five potential scenarios have to be evaluated: (1) seawater intrusion, (2) upwelling of high-sulfate groundwater, (3) local dissolution of gypsum, (4) an up-gradient contaminant source to the northeast of the GCR property and (5) battery acid contamination.  相似文献   
982.
Most karstic aquifer media may be characterized as the triple-void media with highly-varied hydraulic properties, including matrix pore, fissure and conduit, in which liner flow may co-exist with non-linear flow. In this paper, an attempt is made to couple linear flow with non-linear flow in a single unified flow governing equations by introducing the concept of equivalent hydraulic conductivity (EHC) and deriving a general Darcys law for various flow. The expression of EHC in the karst conduit and fissure are also derived. The procedures of numerical implementation are demonstrated via an ideal model and a case study of karst aquifer system in the Beishan Ore Formation area, Guangxi Autonomous Region, China.  相似文献   
983.
Release of CO2 from surface ocean water owing to precipitation of CaCO3 and the imbalance between biological production of organic matter and its respiration, and their net removal from surface water to sedimentary storage was studied by means of a quotient θ = (CO2 flux to the atmosphere)/(CaCO3 precipitated). θ depends not only on water temperature and atmospheric CO2 concentration but also on the CaCO3 and organic carbon masses formed. In CO2 generation by CaCO3 precipitation, θ varies from a fraction of 0.44 to 0.79, increasing with decreasing temperature (25 to 5°C), increasing atmospheric CO2 concentration (195–375 ppmv), and increasing CaCO3 precipitated mass (up to 45% of the initial DIC concentration in surface water). Primary production and net storage of organic carbon counteracts the CO2 production by carbonate precipitation and it results in lower CO2 emissions from the surface layer. When atmospheric CO2 increases due to the ocean-to-atmosphere flux rather than remaining constant, the amount of CO2 transferred is a non-linear function of the surface layer thickness because of the back-pressure of the rising atmospheric CO2. For a surface ocean layer approximated by a 50-m-thick euphotic zone that receives input of inorganic and organic carbon from land, the calculated CO2 flux to the atmosphere is a function of the CaCO3 and Corg net storage rates. In general, the carbonate storage rate has been greater than that of organic carbon. The CO2 flux near the Last Glacial Maximum is 17 to 7×1012 mol/yr (0.2–0.08 Gt C/yr), reflecting the range of organic carbon storage rates in sediments, and for pre-industrial time it is 38–42×1012 mol/yr (0.46–0.50 Gt C/yr). Within the imbalanced global carbon cycle, our estimates indicate that prior to anthropogenic emissions of CO2 to the atmosphere the land organic reservoir was gaining carbon and the surface ocean was losing carbon, calcium, and total alkalinity owing to the CaCO3 storage and consequent emission of CO2. These results are in agreement with the conclusions of a number of other investigators. As the CO2 uptake in mineral weathering is a major flux in the global carbon cycle, the CO2 weathering pathway that originates in the CO2 produced by remineralization of soil humus rather than by direct uptake from the atmosphere may reduce the relatively large imbalances of the atmosphere and land organic reservoir at 102–104-year time scales.  相似文献   
984.
Since the mid-1980s,Tanyaokou large Zn-Cu-Fe sulfides deposit,located at the southwest end of Langshan-Zhaertaishan-Bayan Obo Mesoproterozoic metallogenic belt in the west section of the northern margin of the North China Platform[1?9](Fig.1),has been confirmed to be submarine volcanic exhalative-sedimentary metamorphosed deposit hosted in the miogeosynclinal mud-carbonaceous formation of the Langshan Group(LG)[1],or submarine volcanic exha-lative-deposition-altered deposit[2]or stratabo…  相似文献   
985.
The equilibrium constant, K a, of the association reaction to form ion pairs from charged solute species in supercritical solutions can be calculated from a model based on published equations. Log K a at constant pressure is a linear function of the inverse in the dielectric constant of the fluid times temperature. The dielectric properties of H2O and CO2 at supercritical pressures and temperatures can also be evaluated using the Kirkwood equation. Using Looyenga mixing rules, the dielectric constant of H2O–CO2 mixtures can be obtained and the change in log K a with addition of CO2 in aqueous solutions evaluated. These changes in log K a with addition of CO2 are consistent with measured changes of log K a with addition of Ar in supercritical H2O–Ar solutions.
Log K a of KCl and NaCl increase to an increasing extent as the mole fraction of CO2 increases in H2O–CO2 solutions. For instance, at 2 kbar and constant temperature between 400 and 600° C, log K a of KCl increases by about two orders of magnitude whilst that of NaCl increases by over four orders of magnitude as the CO2 mole fraction increases from 0.0 to 0.35. Such changes in log K a will have dramatic effects on the solubility of minerals in CO2-rich environments.  相似文献   
986.
The dynamics of a stratified fluid contained in a rotating rectangular box is described in terms of the evolution of the lowest moments of its density and momentum fields. The first moment of the density field also gives the position of the fluids centre-of-mass. The resulting low-order model allows for fast assessment both of adopted parameterisations, as well as of particular values of parameters. In the ideal fluid limit (neglect of viscous and diffusive effects), in the absence of wind, the equations have a Hamiltonian structure that is integrable (non-integrable) in the absence (presence) of differential heating. In a non-rotating convective regime, dynamically rich behaviour and strong dependence on the single (lumped) parameter are established. For small values of this parameter, in a self-similar regime, further reduction to an explicit map is discussed in an Appendix. Introducing rotation in a nearly geostrophic regime leads through a Hopf bifurcation to a limit cycle, and under the influence of wind and salt to multiple equilibria and chaos, respectively.  相似文献   
987.
Relatively strongly magnetic fine components (< 30μm, XS-4J and DS-4J) which are most environmentally sensitive were separated from layer S5-1 in the Xifeng and Duanjiapo loess sections and analyzed by MPV-3 for their morphometric characteristics and reflectance, SEM-ESD for their element contents and XRD for their mineral phases, respectively. The results showed that minerals in both samples are dominated by detrial Fe-Ti oxides of aeolian origin. In sample XS-4J the reflectance and iron contents of magnetic minerals are usually high. In addition to magnetite (Fe3O4), maghemite (γFe2O3) and hematite (Fe2O3), some Fe-high oxide (72.25 wt%–86.67 wt%), ilmenite (FeTiO3), and magnetite-ulvöspinel [Fe(FeCr)O4, Fe (FeNi)O4] were also detected. In sample DS-4J obvious negative linear correlations were found between Ti and Fe, and the contents of Mn, Si, Al and Ca are usually high and the minerals are dominated by magnetite (maghemite), goethite (FeOOH) and limonite (containing Si and OH). In addition, the signs of corrosion of magnetic minerals and newly crystallized magnetite (maghemite) were recognized. Differences in the composition and assemblage characteristics of magnetite minerals between XS and DS reflect significant differences in source rocks and preserving conditions.  相似文献   
988.
A technique is proposed for Earths gravity field modeling on the basis of satellite accelerations that are derived from precise orbit data. The functional model rests on Newtons second law. The computational procedure is based on the pre-conditioned conjugate-gradient (PCCG) method. The data are treated as weighted average accelerations rather than as point-wise ones. As a result, a simple three-point numerical differentiation scheme can be used to derive them. Noise in the orbit-derived accelerations is strongly dependent on frequency. Therefore, the key element of the proposed technique is frequency-dependent data weighting. Fast convergence of the PCCG procedure is ensured by a block-diagonal pre-conditioner (approximation of the normal matrix), which is derived under the so-called Colombo assumptions. Both uninterrupted data sets and data with gaps can be handled. The developed technique is compared with other approaches: (1) the energy balance approach (based on the energy conservation law) and (2) the traditional approach (based on the integration of variational equations). Theoretical considerations, supported by a numerical study, show that the proposed technique is more accurate than the energy balance approach and leads to approximately the same results as the traditional one. The former finding is explained by the fact that the energy balance approach is only sensitive to the along-track force component. Information about the cross-track and the radial component of the gravitational potential gradient is lost because the corresponding force components do no work and do not contribute to the energy balance. Furthermore, it is shown that the proposed technique is much (possibly, orders of magnitude) faster than the traditional one because it does not require the computation of the normal matrix. Hints are given on how the proposed technique can be adapted to the explicit assembling of the normal matrix if the latter is needed for the computation of the model covariance matrix.Acknowledgments. Professor R. Klees is thanked for support of the project and for numerous fruitful discussions. The authors are also thankful to Dr. J. Kusche for useful remarks and to Dr. E. Schrama, his solid background in satellite geodesy proved to be very helpful. A large number of valuable comments were made by Dr. S.-C. Han, Dr. P. Schwintzer, and an anonymous reviewer; their contribution is greatly acknowledged. The satellite orbits used in the numerical study were kindly provided by Dr. P. Visser (Aerospace Department, Delft University of Technology). Access to the SGI Origin 3800 computer was provided by Stichting Nationale Computerfaciliteiten (NCF), grant SG-027.  相似文献   
989.
To investigate whether the biological toxicity of aquatic hypercapnia is due to the direct effects of CO2 or to the effects of acidification of seawater by CO2, the Japanese flounder (Paralichthys olivaceus) was subjected to seawater equilibrated with a gas mixture of air containing 5% CO2 (pH 6.18) or seawater acidified to the same pH with 1 N H2SO4. All the fish died within 72 h in the CO2 exposure group, whereas no mortality occurred in the acid group. Acid-base parameters as well as plasma ion concentrations were severely perturbed in the CO2 exposure group, whereas they were minimally affected in the acid group. These results clearly demonstrate that the mortality in the CO2 group is a direct result of the elevated levels of dissolved CO2 and not to the effects of the reduced water pH.  相似文献   
990.
We present a simplified method to simulate strong ground motion for a realistic representation of a finite earthquake source burried in a layered earth. This method is based on the stochastic simulation method of Boore (Boore, D. M., 1983, Bull. Seism. Soc. Am. 73, 1865–1894) and the Empirical Greens Function (EFG) method of Irikura (Irikura, K., 1986, Proceedings of the 7th Japan Earthquake symposium, pp. 151–156). The rupture responsible for an earthquake is represented by several subfaults. The geometry of subfaults and their number is decided by the similarity relationships. For simulation of ground motion using the stochastic simulation technique we used the shapping window based on the kinetic source model of the rupture plane. The shaping window deepens on the geometry of the earthquake source and the propagation characteristics of the energy released by various subfaults. The division of large fault into small subfaults and the method for accounting their contribution at the surface is identical to the EGF. The shapping window has been modified to take into account the effect of the transmission of energy released form the finite fault at various boundaries of the layered earth model above the source. In the present method we have applied the correction factor to adjust slip time function of small and large earthquakes. The correction factor is used to simulate strong motion records having basic spectral shape of 2 source model in broad frequency range. To test this method we have used the strong motion data of the Geiyo earthquake of 24th March 2001, Japan recorded by KiK network. The source of this earthquake is modelled by a simple rectangular rupture of size 24 × 15 km, burried at a depth of 31 km in a multilayered earth model. This rupture plane is divided into 16 rectangular subfaults of size 6.0 × 3.75 km each. Strong motion records at eight selected near-field stations were simulated and compared with the observed records in terms of the acceleration and velocity records and their response spectrum. The comparison confirms the suitability of proposed rupture model responsible for this earthquake and the efficacy of the approach in predicting the strong motion scenario of earthquakes in the subduction zone. Using the same rupture model of the Geiyo earthquake, we compared the simulated records from our and the EGF techniques at one near-field station. The comparison shows that this technique gives records which matches in a wide frequency range and that too from simple and easily accessible parameters of burried rupture.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号